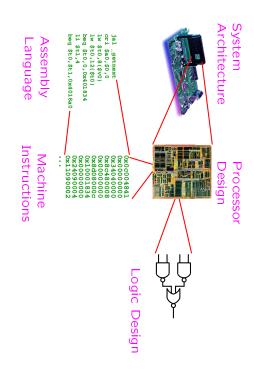
What 314 Is About



Digital Representation

Example: representing a B&W picture:

- Black = OV
- White = 1 V
- 80% grey = 0.8 V
- •

Represent by scanning picture in fixed order.

Let's try doing some computation with the voltages...

Building A Computer

Information is encoded with bits: 0's and 1's. (we've already seen 2's complement numbers)

These are encoded using voltages...

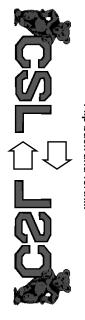
- + well understood
- easy to generate, detect
- affected by environment

But why 1's and 0's only?

Digital Representation

Flip image:

Flip back and forth...

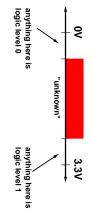


What really happens...

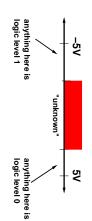
Have to build system to tolerate some error (noise).

Logic Levels

- Store just one bit on a wire...
- Gain reliability

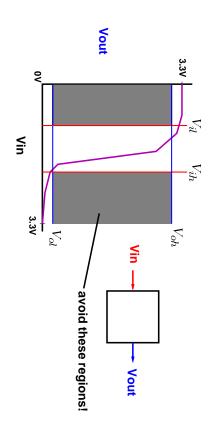


Different conventions are possible



Example

- Input: logic O if $< V_{il}$, logic 1 if $> V_{ih}$
- Output logic 0 if $< V_{ol}$, logic 1 if $> V_{oh}$

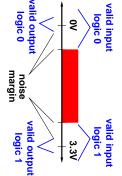


Combinational Devices

A combinational device:

- Output is a function of inputs only ("memoryless")
- Takes input to valid, stable outputs

Combinational devices restore marginally valid signals!



Digital View

- If input is 0, output is 1
- If input is 1, output is 0

Normally written in a table, like this:

- 0	٦
0 -	4n0

Called a "truth-table".

Implementation: Switching Networks

Lots of ways to build switches...

- relays
- vacuum tubes
- transistors
- P-transistor

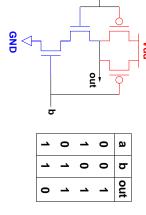
N-transistor

Connect a and b if g = 0.

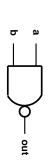
Connect a and b

if g = 1.

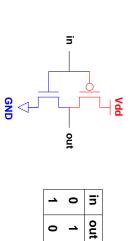
Switching Networks: NAND



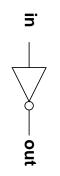
- Function: NAND
- Symbol:



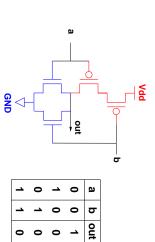
Switching Networks: Inverter



- Function: NOT
- Called an inverter
- Symbol:



Switching Networks: NOR



- Function: NOR
- Symbol:

Building Functions From Gates

• AND:

• OR:

table, or logic equations. Can specify function by describing gates, truth

Logic Equations

AND:

$$\begin{array}{rcl}
 out & = & a \cdot b \\
 out & = & ab \\
 out & = & a \wedge b
 \end{array}$$

0R:

$$\begin{array}{rcl} out & = & a+b \\ out & = & a \lor b \end{array}$$

NOT:

$$\begin{array}{rcl} out &=& \neg in \\ out &=& \overline{in} \end{array}$$

Let's Build An Adder

Write down function:

Fun with identities:

 $a \cdot 1 = a$ $a \cdot 0 = 0$ $a\overline{a} = 0$ a+1=1a + 0 = a $a + \overline{a} = 1$

a(b+c) = ab + ac

Logic Equations

- ullet Two 1-bit inputs, a and b
- Two 1-bit outputs, sum and carry

Truth-table:

0	a
0 0 1	4
0 0 1	carry
0 1 0	wns

logic equations.

Check by writing truth tables, or by manipulating

 $a + \overline{a}b = a + b$

 $(a \cdot \overline{b}) = \overline{a} + \overline{b}$ $(a+b) = \overline{a} \cdot b$

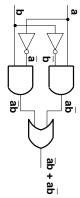
Let's Build An Adder

Sum output:

_	0	_	0	a
_	_	0	0	4
0	_	_	0	sum
$a \cdot b$	$\overline{a} \cdot b$	$a\cdot \overline{b}$	$\overline{a}\cdot\overline{b}$	Logic term

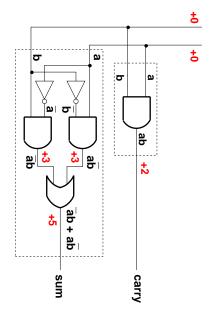
Logic equation: $a \cdot \overline{b} + \overline{a} \cdot b$

Circuit:



Let's Build An Adder

Final Circuit:



Numbers indicate the number of sequential steps from input to output (worst-case).

Let's Build An Adder

Carry output:

<u></u>	0	0	0	<i>a</i>
_	0	0	0	carry
$a \cdot b$	$\overline{a} \cdot b$	$a\cdot \overline{b}$	$\overline{a}\cdot \overline{b}$	Logic term

Logic equation: $a \cdot b$

Circuit:

