In this recitation, we will see more examples of structures and signatures that implement functional data structures.
In recitation 7, we discussed stacks and queues. We repeat the signature for stacks here, adding a notation for representing the abstract contents.
  signature STACK = 
    sig
      (* Overview: an 'a stack is a stack of elements of type 'a.
       * We write |e1, e2, ... en| to denote the stack with e1
       * on the top and en on the bottom. *)
      type 'a stack
      exception EmptyStack
      val empty : 'a stack
      val isEmpty : 'a stack -> bool
      val push : ('a * 'a stack) -> 'a stack
      val pop : 'a stack -> 'a stack
      val top : 'a stack -> 'a
      val map : ('a -> 'b) -> 'a stack -> 'b stack
      val app :  ('a -> unit) -> 'a stack -> unit
      (* note: app traverses from top of stack down *)
    end
Now we present a signature for queues; first-in, first-out data structures. Again, we introduce a notation for discussing the abstract contents of the queue.
signature QUEUE =
    sig
      (* Overview: an 'a queue is a FIFO queue of elements of type 'a.
       * We write <e1, e2, ... en> to denote the queue whose front
       * is e1 and whose back is en. Elements are enqueued at the back
       * and dequeued from the front. *)
      type 'a queue
      exception EmptyQueue
      val empty : 'a queue
      val isEmpty : 'a queue -> bool
      (* enqueue(x, q) is q with x enqueued at the back.
       * Example: enqueue(3, <1,2>) = <1,2,3> *)
      val enqueue : ('a * 'a queue) -> 'a queue
      (* dequeue(q) is q with its front element removed.
       * Requires: q is nonempty. *).
      val dequeue : 'a queue -> 'a queue
      (* front(q) is the element at the front. Requires: q is nonempty. *) 
      val front : 'a queue -> 'a
      val map : ('a -> 'b) -> 'a queue -> 'b queue
      val app : ('a -> unit) -> 'a queue -> unit      
    end
The simplest possible implementation for queues is to represent a queue via two stacks: one stack A on which to enqueue elements, and one stack B from which to dequeue elements. When dequeuing, if stack B is empty, then we reverse stack A and consider it the new stack B.
Here is an implementation for such queues. It uses the stack structure Stack, which is rebound to the name S inside the structure to avoid long identifier names.
structure Queue :> QUEUE = 
    struct
      structure S = Stack
      type 'a queue = ('a S.stack * 'a S.stack)
      (* AF: The pair (|e1, e2, ... en|, |e'1, e'2, ..., e'n|) represents
       *     the queue <e'1, e'2, ..., e'n, en, ..., e2, e1>.
       *)
      exception EmptyQueue
      val empty : 'a queue = (S.empty, S.empty)
      fun isEmpty ((s1,s2):'a queue) = 
        S.isEmpty (s1) andalso S.isEmpty (s2) 
      fun enqueue (x:'a, (s1,s2):'a queue) : 'a queue = 
        (S.push (x,s1), s2)
      fun rev (s:'a S.stack):'a S.stack = let
        fun loop (old:'a S.stack, new:'a S.stack):'a S.stack = 
          if (S.isEmpty (old))
            then new
          else loop (S.pop (old), S.push (S.top (old),new))
      in
        loop (s,S.empty)
      end
      fun dequeue ((s1,s2):'a queue) : 'a queue = 
        if (S.isEmpty (s2))
          then (S.empty, S.pop (rev (s1))) 
                    handle S.EmptyStack => raise EmptyQueue
        else (s1,S.pop (s2))
      fun front ((s1,s2):'a queue):'a = 
        if (S.isEmpty (s2))
          then S.top (rev (s1))
                   handle S.EmptyStack => raise EmptyQueue
        else S.top (s2)
      fun map (f:'a -> 'b) ((s1,s2):'a queue):'b queue = 
        (S.map f s1, S.map f s2)
      fun app (f:'a -> unit) ((s1,s2):'a queue):unit = 
        (S.app f s2;
         S.app f (rev (s1)))
         end
Another simple data type is a fraction, a ratio of two integers. Here is a possible signature.
signature FRACTION =
    sig
	(* A fraction is a rational number *)
	type fraction
	(* first argument is numerator, second is denominator *)
	val make : int -> int -> fraction
	val numerator : fraction -> int
	val denominator : fraction -> int
	val toString : fraction -> string
	val toReal : fraction -> real
	val add : fraction -> fraction -> fraction
	val mul : fraction -> fraction -> fraction
    end
Here's one implementation of fractions -- what can go wrong here?
structure Fraction1 :> FRACTION =
    struct
	type fraction = { num:int, denom:int }
        (* AF: The record {num, denom} represents fraction (num/denom) *)
	fun make (n:int) (d:int) = {num=n, denom=d}
	fun numerator(x:fraction):int = #num x
	fun denominator(x:fraction):int = #denom x
	fun toString(x:fraction):string =
	    (Int.toString (numerator x)) ^ "/" ^
	    (Int.toString (denominator x))
	fun toReal(x:fraction):real =
	    (Real.fromInt (numerator x)) / (Real.fromInt (denominator x))
	fun mul (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(numerator y))
	         ((denominator x)*(denominator y))
	fun add (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(denominator y) +
		  (numerator y)*(denominator x))
		 ((denominator x)*(denominator y))
    end
There are several problems with this implementation.
First, we could give 0 as the denominator -- this is a bad fraction.
Second, we're not reducing to smallest form.  So we could overflow
faster than we need to.
Third, we're not consistent with the signs of the numbers.  Try
make ~1 ~1.
We need to pick some representation invariant that describes how we're going to represent legal fractions. Here is one choice that tries to fix the bugs above.
structure Fraction2 :> FRACTION =
    struct
	type fraction = { num:int, denom:int }
        (* AF: represents the fraction num/denom
	 * RI:
	 *  (1) denom is always positive
	 *  (2) always in most reduced form
	 *)
	fun gcd (x:int) (y:int) : int =
	(* Algorithm due to Euclid:  for positive numbers x and y,
	 * find the greatest-common-divisor. *)
	    if (x = y) then x
	    else if (x < y) then gcd x (y - x)
		 else gcd (x - y) y
	exception BadDenominator
	fun make (n:int) (d:int) : fraction =
	    if (d < 0) then raise BadDenominator
	    else let val g = gcd (abs n) (abs d)
		     val n2 = n div g
		     val d2 = d div g
		 in
		     if (d2 < 0) then {num = ~n2, denom = ~d2}
		     else {num = n2, denom = d2}
		 end
	fun numerator(x:fraction):int = #num x
	fun denominator(x:fraction):int = #denom x
	fun toString(x:fraction):string =
	    (Int.toString (numerator x)) ^ "/" ^
	    (Int.toString (denominator x))
	fun toReal(x:fraction):real =
	    (Real.fromInt (numerator x)) / (Real.fromInt (denominator x))
	(* notice that we didn't have to re-code mul or add --
	 * they automatically get reduced because we called
	 * make instead of building the data structure directly.
	 *)
	fun mul (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(numerator y))
	         ((denominator x)*(denominator y))
	fun add (x:fraction) (y:fraction) : fraction =
	    make ((numerator x)*(denominator y) +
		  (numerator y)*(denominator x))
		 ((denominator x)*(denominator y))
    end
  
A very useful type in programming is the dictionary. A dictionary is a mapping from strings to other values. A more general dictionary that maps from one arbitrary key type to another is usually called a map or an associative array, although sometimes “dictionary” is used for these as well. In any case, the implementation techniques are the same. Here's a signature for dictionaries:
signature DICTIONARY =
    sig
        (* An 'a dict is a mapping from strings to 'a.
	   We write {k1=>v1, k2=>v2, ...} for the dictionary which
           maps k1 to v1, k2 to v2, and so forth. *)
	type key = string
        type 'a dict
	(* make an empty dictionary carrying 'a values *)
	val make : unit -> 'a dict
	(* insert a key and value into the dictionary *)
	val insert : 'a dict -> key -> 'a -> 'a dict
	(* Return the value that a key maps to in the dictionary.
	 * Raise NotFound if there is not mapping for the key. *)
	val lookup : 'a dict -> key -> 'a
	exception NotFound
        end
Here's an implementation discussed in recitation 6.
structure FunctionDict :> DICTIONARY =
  struct
    type key = string
    type 'a dict = string -> 'a
    (* The function f represents the mapping in which x is mapped to
     * f(x), except for x such that f raises NotFound, which are not
     * in the mapping.
     *)
    exception NotFound
    fun make () = fn _ => raise NotFound
    fun lookup (d: 'a dict) (key: string) : 'a = d key
    fun insert (d:'a dict) (k:key) (x:'a) : 'a dict = 
      fn k' => if k=k' then x else d k'
Here is another implementation:  an association list
[(key1,x1),...,(keyn,xn)]
structure AssocList :> DICTIONARY =
    struct
	type key = string
        type 'a dict = (key * 'a) list
        (* AF: The list [(k1,v1), (k2,v2), ...] represents the dictionary
         *     {k1 => v1, k2 => v2, ...}, except that if a key occurs
	 *     multiple times in the list, only the earliest one matters.
	 * RI: true.
	 *)
	fun make():'a dict = []
	fun insert (d:'a dict) (k:key) (x:'a) : 'a dict = (k,x)::d
	exception NotFound
	fun lookup (d:'a dict) (k:key) : 'a =
	    case d of
		[] => raise NotFound
	      | ((k',x)::rest) =>
		    if (k = k') then x
		    else lookup rest k
                    end
This next implementation seems a little better for looking up values. Also note that the abstraction function does not need to specify what duplicate keys mean.
structure SortedAssocList :> DICTIONARY =
    struct
	type key = string
	type 'a dict = (key * 'a) list
        (* AF: The list [(k1,v1), (k2,v2), ...] represents the dictionary
         *     {k1 => v1, k2 => v2, ...}
	 * RI: The list is sorted by key and each key occurs only once
	 *     in the list. *)
	fun make():'a dict = []
	fun insert (d:'a dict) (k:key) (x:'a) : 'a dict =
	    case d of
		[] => (k,x)::nil
	      | (k',x')::rest =>
		    (case String.compare(k,k') of
			 GREATER => (k',x')::(insert rest k x)
		       | EQUAL => (k,x)::rest
		       | LESS => (k,x)::(k',x')::rest)
	exception NotFound
	fun lookup (d:'a dict) (k:key) : 'a =
	    case d of
		[] => raise NotFound
	      | ((k',x)::rest) =>
		    (case String.compare(k,k') of
			 EQUAL => x
		       | LESS => raise NotFound
		       | GREATER => lookup rest k)
    end
Here is another implementation of dictionaries. This one uses a binary tree to keep the data -- the hope is that inserts or lookups will be proportional to log(n) where n is the number of items in the tree.
structure AssocTree :> DICTIONARY =
    struct
	type key = string
	datatype 'a dict = Empty | Node of {key: key,datum: 'a,
					    left: 'a dict,right: 'a dict}
        (* AF: Empty represents the empty mapping {}
         *     Node {key, datum, left, right} represents the union of the
         *     mappings {key => datum}, AF(left), and AF(right).
	 * RI: for Nodes, data to the left have keys that
         *     are LESS than the datum and the keys of
	 *     the data to the right. *)
        fun make():'a dict = Empty
	fun insert (d:'a dict) (k:key) (x:'a) : 'a dict =
	    case d of
		Empty => Node{key=k, datum=x, left=Empty, right=Empty}
	      | Node {key=k', datum=x', left=l, right=r} =>
		    (case String.compare(k,k') of
			 EQUAL =>
			     Node{key=k, datum=x, left=l, right=r}
		       | LESS =>
			     Node{key=k',datum=x',left=insert l k x,
				  right=r}
		       | RIGHT =>
			     Node{key=k',datum=x',left=l,
				  right=insert r k x})
	exception NotFound
	fun lookup (d:'a dict) (k:key) : 'a =
	    case d of
		Empty => raise NotFound
	      | Node{key=k',datum=x, left=l, right=r} =>
		    (case String.compare(k,k') of
			 EQUAL => x
		       | LESS => lookup l k
		       | RIGHT => lookup r k)
    end