CS 312 PS5: Concurrent Language Interpreter

Final submission: 11:59 PM, April 11, 2007

1 Introduction

In this assignment you will build an interpreter for a concurrent functional language called RCL,
the Robot Control Language. An RCL program has multiple, parallel threads of execution, with
each thread typically controlling a separate robot. RCL also has some imperative features. Each
thread has its own local memory, and can communicate through a global shared memory. Threads
can also start other threads to carry out tasks, possibly in cooperation with the original thread. RCL
programs can interact with an external environment that provides additional functionality, such as
I/0O. Later on the external environment will be how robots sense and interact with the world around
them.

For Problem Set 5, you will implement RCL expression evaluation, including the concurrent
constructs. You will also implement the RCL memory, including a garbage collector that manages
the local and global memories. In the next assignment, you will use your RCL interpreter to
implement a game in which robot teams compete, running RCL programs of your devising. We
are providing certain functionality in the interpreter, but you will have to implement most of the
important logic.

As always, your programs must compile without any warnings. Programs that do not compile
or compile with warnings may receive an automatic zero. Files submitted should not have any
lines longer than 80 characters, and ideally all lines should be less than 78 characters long. We will
evaluate your problem set on several different criteria: the specifications you write, the correctness
of your implementation, code style, efficiency, and validation strategy. This is a complex problem
set, and you will be building on your PS5 solution for PS6, so we strongly recommend starting
early. Get your design right from the beginning and the rest will go more smoothly.

In addition to the implementation of RCL, there are some written problems to do.

Changes to problem set

4/6 Due to changes in the stub files, you will also need to edit and submit world/world.sml.
Also, we expect you to use CVS and to turn in your CVS log, as you will do for all group
assignments in this course.

4/4 Description of spawn updated to agree with the updated stub files.

2 The RCL language

The RCL language has some interesting features. It is a concurrent language in which multiple
threads can execute simultaneously. It has imperative features that allow directly updating memory

1

locations, and processes can interact with an external environment.

A running thread can launch another thread using the expression spawn e. The expression e is
the RCL expression that the newly created thread will execute independently of its parent thread.

Each thread has access to two different kinds of memory. Each robot has its own local memory,
which can only be used by that robot. Local memory is allocated with 1ref e expressions. In
addition, there is a global memory that is shared by all threads. Robots can communicate with
each other by modifying locations in the global memory. Global memory is allocated with gref e
expressions.

Robots can interact with their external environment, using an expression of the form do e. This
expression is evaluated by sending the value of e to the external world. What happens depends
on the external world that the RCL program is interacting with; the behavior of the external world
is not specified by the RCL language. Typically, different possible values of e are interpreted as
requests to perform different actions.

In the external world that we are providing for this problem set, the do e expression is used for
I/0. For example, the expression do 0 causes the external world to ask the user to input a number,
which is returned as a result of the expression.

In the next assignment, you will modify the implementation of the external world will be
modified in the next assignment to allow robots to sense and interact with their environment in
many more ways.

2.1 Expressions

An RCL program for a single robot can contain the following expressions:

n An integer constant, as in SML. Examples: ~3, 0, 2.

(e1,€2) A pair. Evaluates to the value (v, v9) where v, and v, are the respective
results of evaluating the expressions e; and es.

unop e Returns unop applied to the result of evaluation of e. unop is the following
unary operator: ~ (negates an integer).

ey binop es Applies binary operator binop to the results of evaluations of the two ex-
pressions. Both e; and e; must evaluate to an integer. binop is one of the
following operators: +, —, *, /,mod, <,=. For the last two operators the
result will be 1 if the comparison is true, and 0 otherwise.

€1 ; € A sequence of expressions. It is evaluated similarly to an ML sequence.

First expression e; is evaluated, possibly with side effects on the memories.
After that the result of e; is thrown away and expression e is evaluated.

letid =€y iney Binds the result of evaluating e; to the identifier ¢d and uses the binding to
evaluate e5. Identifiers start with a letter and consist of letters, underscores,
and primes.

fnid=>e Anonymous function with argument ¢d and body e. Functions are values, so
the body e is not evaluated until an argument is supplied to the function.

d Identifier. Must be contained inside a 1et or fn expression with the same

identifier name, otherwise unbound identifier error will occur.

€1 €2

if ethen e else ey

typecase ¢ of
(id,id') =>e;
| int id => €9
| loc id =>e3
| fun id => ey
| any id => e;

delay e by n
lrefe

gref e
€1 = €y

lock e €9

Function application. Evaluates expression e; to a function fn id => e,
expression e; to a value v, binds vy to the identifier ¢d and uses the binding
to evaluate e.

Similar to the ML if/then/else expression except that the result of ex-
pression e is tested for being greater than O (there are no booleans in RCL).
Examples: if 1 then 1 else 2returns 1, if 4<3 then 1 else 2re-
turns 2.

First evaluates expression e to a value. If the result is a pair, it binds the
elements of the pair to id and id’ in the case for pairs. Otherwise, it binds
the the result to id in the appropriate case. The case any matches any value.
It then evaluates the expression e; of the matched case.

Each of the cases is optional and can occur at most once. The case for any
is allowed only if at least two of the other cases are missing. As in ML,
all cases must be covered. It is not your task to check all of these condi-
tions. The expression “typecase e; of any id => ey” is equivalent to
“let id = e iney”.

Note that lists can be emulated in RCL (as in SML) using pairs of pairs. Also
like SML, the typecase construct gives the ability to distinguish between
the head and the tail of a list.

Delays the evaluation of e by n evaluation steps. The number n must be
an integer constant greater or equal to 1. At each evaluation step, n is de-
creased; when it reaches 1, the expression reduces to e. This expression will
be especially useful in PS6.

Similar to the ML operation ref. First expression e is evaluated to a value
v. After that a new location loc is allocated in the robot’s local memory
and value v is stored at this location. The return result of the expression is
location loc which can be viewed as a memory address.

Similar to 1ref except that the new location is allocated in the global shared
memory. Before allocating the location the result of e is checked to ensure
that it satisfies the “global memory invariant” (see section[2.3).

Evaluates expression e to location loc and returns the value stored at this
location. Note that this operation is not affected by whether loc is currently
locked. Locking a location only affects other attempts to lock the same
location.

Evaluates expression e; to a location loc; and expression es to a value vs.
After that replaces the value at the location loc; with v,. The return result
of this expression is vy. If locy is a location in the global memory, then
the value v, is checked for the “global memory invariant” before assigning
(see section [2.3]). Note that this operation is not affected by whether loc; is
currently locked. Locking a location only affects other attempts to lock the
same location.

This expression first evaluates e; to a location loc. If loc is in local memory,
the program proceeds with the evaluation of ey. If loc is in global memory

and is not already locked, then the current process acquires a lock for loc. If
any other process already has the lock, the process will continue to attempt
the operation until the old lock is removed. All other cases are runtime er-
rors.

Once the current process has grabbed the lock, the expression reduces to
a new expression of the form locked loc e;. Then it evaluates ey, while
maintaining the lock. When the evaluation of e, finishes with a value v, the
lock is released and the value v is returned.

doe This allows a robot to interact with the external world. First expression
e is evaluated to a value v which is then sent to the external world. The
return result of this expression can be arbitrary (it is specified by the external
world). The list of actions currently recognized by the external world is
given in section 2.6

spawn e This launches a new robot. The code of the spawned robot is e.

There are two expressions that never appear in the source of an RCL program, but can occur during
its evaluation:

e Joc, a memory location. A location can be viewed as a pair (scope, addr) where scope
identifies whether it is in the local or global memory and addr is a memory address. A
location can only be generated using 1ref and gref expressions.

e locked loc e. This occurs during the evaluation of a 1ock expression , after the lock for loc
has been acquired.

We have provided for you a representation for expressions as the type AST . exp in the file ast/ast . sml.

2.2 Values

Some of the expressions described above are values; they cannot be evaluated any further:

° Integer constants n;

e Locations loc;

e Functions fn id => e;

e Pairs (vq, vy), provided that v; and v, are values.

Note that there is no special type for values in our implementation; it is up to the implementer of
the interpreter to identify which expressions are values.

2.3 Local and global memories

A memory o can be viewed as a mapping from locations (or addresses) to values. Each robot
has its own local memory that cannot be accessed by other robots. In addition, there is a global
memory shared among all robots. The difference between local and global memory is illustrated
by the following example:

let r = 1ref O
in spawn (let val f = fn x => (r := 1) in f 1);
'r

This robot (let’s call it “A”) allocates a location (call it loc) for an integer 0 and then launches
another robot (let’s call it “B”). The local memory of A is copied to the local memory of B,
so local memories of A and B will contain two different locations storing value 0. After some
reductions robot A evaluates to expression !loc and robot B to expression (loc := 1). Robot B then
modifies its own copy of location loc to 1; memory of robot A is unchanged. Thus, robot A will
return 0. Now consider the same code where 1ref is replaced with gref. Then location loc will
be allocated in the global memory, so after launching B locations loc in both robots will point to
the same place. Therefore, depending on the order of executions of A and B, robot A will return
either O (if A is executed before B) or 1 (if A is executed after B).

To make sure that the local memory of a robot cannot be accessed by other robots we need
to maintain the following global memory invariant. values stored in the global memory do not
contain locations from local memories. Thus, each modification of the global memory (i.e. ex-
pressions gref v and loc := v where loc is a location in the global memory) must be checked before
evaluation: if value v contains references to local memories, then a run-time error will occur.

Examples:

e gref (lref 0, 0) isinvalid. A thread trying to evaluate this expression should be termi-
nated immediately.

e gref (fn x => lref x, 0) is okay.

e let loc = lref 0 in gref(0) := (fn x => loc) should generate a run-time error
when the := is evaluated.

2.4 Evaluation

A process (that is, a single robot) is represented by a unique process identifier pid, local memory
M and expression e. A current state of the interpreter is described by a queue of processes, as
well as a global memory M. The interpreter repeatedly performs the following operation: it takes
the process at the head of the queue, performs a single evaluation step on its expression (possibly
modifying the process local and global memory), and places the modified process at the end of the
queue. A single step is illustrated in Figure |1} It is important that robot programs execute one step
at time. If we evaluated a program down to a value all at once, the system would not be concurrent
because only that robot would be able to run. Therefore, we must evaluate in steps. Given an
expression, the evaluator finds the leftmost subexpression that can be reduced, and reduces this
subexpression.

Note that reductions can occur on several expressions before evaluating all of their subexpres-
sions. These expressions are the following: let id = v in e, if v then e; else eg, (fnid => e)v,

process n process 1

ipidy,; {local memory M, | | expression ey, | ipidy| | local memory M i | expression ¢} |

process n

ipid,,; ilocal memory M,, | i expression e,, |

process 2 -,

ipido} | local memory My | | expression e |

process 1 process 2
ipid;i | local memory M | | expression e; | ipidsi | local memory M | | expression e |
global memory M, global memory M

Figure 1: Single step of the interpreter on process 1. Expression ¢’ is the result of a single evalua-
tion step on e. Possible side effects include modifying local memory A/, and global memory M,.

delay e by n, typecase v of (id,id) => ey | ..., spawn e, lock loc e, and v ; e. The v’s indi-
cate subexpressions that must be fully evaluated before the expression can be reduced, and the e’s
indicate subexpressions that are not evaluated until after the reduction of the whole expression.

2.5 Reductions

The list of possible reductions that can be performed during evaluation is given below. These
reductions are similar to the reductions you have learned for SML. First we consider reductions
that do not change local or global memories. Letters v stand for values, and letters e for expressions
which may or may not be values.

unop v — v’ where v' = unop v

vg binop v; — V' where v' = v binop v,
v, e — e
letid=vine — e{v/id}
(fnid=>e)v — e{v/id}
if v thene; elseey — ¢ ved{l,2,3...}
if v thene; elseeys — ey all other v
delay ebyn — delayebyn’ wheren'=n—1,ifn > 1
delayebyl — e
typecase (v,v') of ... (id,id") =>e ... — e{v/id,v'/id'}
typecase v of labid =>e .. — e{v/id} where lab is the one of int, loc, fun, or
any that matches v

e{v/id} stands for the result of substitution of value v for all occurrences of identifier id in expres-
sion e. The rules for the memory accesses are as follows:

lloc — v

lref v — loc

gref v — loc

loc . = v — v

where loc is a location in the process local memory or in the global
memory, and v is the value stored at this location

where loc is a new location in the process local memory

Side effect: a location loc is allocated in the memory, its content
is initialized with v

where loc 1s a new location in the global memory

Checks: v satisfies the global memory invariant (Section [2.3))
Side effect: a location loc is allocated in the memory, with its
contents initialized to v

where loc is a location in the process local memory or in the global
memory

Checks: v satisfies global memory invariant (if loc is global)
Side effect: content of the location loc is replaced with v

Finally, the reductions for concurrent constructs are:

lockloce — ¢
lock loce — lockloce

lock loc e — locked loc e

locked locv — v

dov — e

Spawne — n

where loc is a location in local memory

where loc is a location in global memory that is currently locked

by another process

where loc is a location in global memory and is not currently

locked. Effects: location loc is locked by the current process
where loc is a location in global memory that is locked by the

current process. Effects: the lock for loc is released

where e is the expression returned by the external world

Side effect: send doAction(pid, v) to the external world where

pid is the process identifier of the robot. The external world will

return the expression e. (see Figure [2)

Side effects: ask the external world for a fresh process identifier

pid'. If this succeeds, launch a new process with the identifier pid’

expression e, and a copy of the memory of the current process;

the result is 1. If the world does not permit a new process to be

spawned, the result is O (see Figure [3)

Notice that because expressions may have side effects, it is critical that expressions are evalu-
ated left to right. For example, e; binop e; must be evaluated as

ey binop es — vy binop e; — vy binop v — v

External

d
sen world

doAction(pid, v)

1/0

pid e it e

Figure 2: Evaluation of the do v expression

ipidi { M L1 L.

pidt v spam e] -

pid't L M €

Figure 3: Evaluation of the expression spawn e. The fresh process identifier pid’ comes from the
external world.

2.6 The external environment

Currently the do action performs simple I/O operations, though in PS6 it will be a general mecha-
nism for interacting with the world. The following actions are currently provided:

e do 0 : reads a number from the input, returns it to the interpreter
e do (1, v) : prints the value v to the output and returns v.

e do (2, (¢, (ca, (c3, (..., (cn, 0)))))) : prints the characters cy, ..., c,. Returns
1 if well-formatted, O otherwise.

e do (3, v) : if value v is well formed, prints v and returns 1, otherwise prints undefined
text and returns 0. Here v is considered well formed if it only contains pair and integer
expressions.

2.7 Configurations

A configuration is the state of the entire interpreter at a particular point during execution. The
configuration consists of a set of processes, each of which has a currently executing expression
and local memory, plus a global memory that is shared by all the processes.

We can describe a single process as a triple (pid, M, e). The entire interpreter configuration is
a tuple containing the global memory M, and the current queue of processes:

<Mg7 <pld17 Ml; €1>7 S <pldn7 Mn; 6n>>

The process at the head of the queue, process 1, is the one that will take the next evaluation
step and be pushed to the end of the queue. Suppose that this process takes the evaluation step
ey — €}, with side effects that change the local memory A/; to M, and the global memory M,
to M;. Then the effect of this step on the configuration as a whole is this:

<Mg7 <p7'd17 Mh €1>, <pld27 M27 62>7 ey <pldn7 Mny €n>>
— <M;7 <pld27 M27 €2>7 R <pldn7 MTL: en>7 <pld17 M{7 e/1>>

The type for configurations, Configuration.configuration, is defined in the source file
eval/configuration.sml. A single step of the interpreter is performed by the function
Evaluation.stepConfigin eval/evaluation.sml.

2.8 Creating and terminating robots

Robots can create other robots by calling spawn e. As a result, a new process will be added to
the list of processes. The new process will have a copy of the old process local memory. The two
processes will be able to communicate with each other if the old process had allocated locations in
the global memory before spawning.

If a process has evaluated to a value, then it rerminates—it is deleted from the list of processes.
Thus, we have the following evaluation rule:

<Mg7 <pid17M1av1>><pid27M2>€2>7"'7<pidnaMn7€n>>
- <M;7<pid27M2762>7---7<pidnaMmen>>

Here, M is the global memory with all locks belonging to pid, released.

A process should also be terminated if it causes a run-time error such as a type error (e.g. !0)
or a violation of the global memory invariant (e.g. gref (lref 0)). A process that is terminated
due to a run-time error yields a result of -1. These run-time errors correspond to processes for
which there is no legal reduction. Note that such errors should terminate the process encountering
an error but must not affect other running processes.

3 Using the interpreter
3.1 File structure

The code is structured as follows:

e absyn/absyn.sml: definitions of basic types (AST.exp, AST.pid)

e eval/memory.sig, memory.sml: definition of the memory type (Memory.memory) and as-
sociated operations

e eval/config.sml: definition of the configuration type

e eval/evaluation.sml: performs a single step of the main interpreter loop. The evaluation
searches for the leftmost subexpression to reduce, then calls the reduction function.

e eval/reductions.sml: defines the one-step reduction function.

e eval/gc.sig, gc.sml: garbage collector

e world/action.sig: interface for interaction with the external world
e debug/debug-loop.sml: interface for debugging

e eval/check.sig, check.sml: well-formedness and consistency checking for expressions,
processes and memories. Useful when debugging.

e rcl/*.rcl, afew sample RCL programs

3.2 Running RCL code

After compiling the code (CM.make ()) you can enter the debugging mode using the command

Debug.debug “a string representing an RCL program”

You will see a prompt (>). You can get the list of available commands by typing “help”. These are
some commands for quick start:

e s: steps one step and shows the new stepped expression

e r: runs until the end

e 1 file: resets the interpreter and loads a file with an RCL program

e h: gives you the help message and shows you many more commands
e g: quits the debugger

There are many other helpful functions and debugger commands; see debug/debug-loop.sml
for more details. If you feel that the debugging tools implemented are inadequate, feel free to
modify them.

3.3 String Literals

Although strings are not part of RCL, the parser will convert string literals into lists of integers.
For example, "hello" parses as (104, (101, (108, (108, (111,0))))).

10

4 Your task
Part 1: Evaluator

Parts of the single-step evaluator are currently written, but there are holes in the implementation.
Also, the implementation has not been tested fully, so it is your job to fix any problems you may
encounter. Your task is to finish the single-step evaluator. You will have to make changes to the
following files:

e cval/evaluation.sml

e eval/reductions.sml

To help in your task, we have also implemented some functions in eval/check.sml that can
be used to check whether expression, processes, and memories are well formed. These functions
will be useful in checking that your interpreter is implemented correctly.

To Submit: Completed versions of eval/evaluation.sml and eval/reductions.sml. Also
submit a summary of your changes in an ASCII file eval.txt, so that we know where to look
when we are grading. Due to changes in the stub files, you will also need to edit and submit
world/world.sml

Part 2: Memory and Synchronization

Finish the implementation of memory synchronization operations. You must modify the file
eval/memory.sml, and provide implementations for acquire, release and releaseAll. You
must also submit a data structure that implements the MemMap specification. You can use the
ListMapFn functor in testing the rest of your memory implementation. You must complete a
functor AVLMapFn that conforms to the MemMap interface and can to implement the memory sys-
tem within the interpreter. We have provided a portion of the functor, but you must complete the
unimplemented functions. See the stub files for details on exactly which functions you need to
finish.

You will also analyze the performance of two memory implementations: the linked-list im-
plementation provided and the AVL trees you implemented. Write two performance benchmark
programs, one that allocates and promptly ignores huge amounts of memory, and one that allocates
and ignores huge amounts of memory, but also spawns new threads very quickly. Plot the run time
of these two benchmarks on each of the two memory systems and turn in a short written analysis
of the results along with possible explanations for the behavior you see in the four cases.

To Submit: Completed copies of memory.sml, AVLMapFn.sml, and a file memory-perf . pdf (or
some other readable format) that discusses performance.

Part 3: The Garbage Collector

Garbage is data in local or global memory that will never be used again. Garbage collectors
clean up garbage by finding memory locations that are not reachable by following any chain of

11

references from a running thread; these location will certainly never be used again because there
is not way to reach them. Unreachable locations should be periodically reclaimed and used for
subsequent allocation requests. The signature gc.sig describes an automatic garbage collector
for the RCL language. Occasionally the garbage collector will be used to clean up memory. In
our RCL interpreter, two kinds of garbage collection are defined: local garbage collection and
global garbage collection. Local garbage collection cleans up the local memory of a particular
robot. Global garbage collection cleans the local memory of all robots as well as the shared global
memory in a configuration.

Implement global and local garbage collection using the mark-and-sweep algorithm described
in class. As implied by the signature gc.sig, the malloc function should try to reuse locations
that the garbage collector has reclaimed. To help you test your garbage collector, the 1ocalGC
and globalGC commands in debug mode will force garbage collections to take place immedi-
ately. We strongly encourage that you to come discuss your design with the course staff during
consulting/office hours.

To Submit: An implementation of garbage collection in file gc . sml.

Part 4: Validation

You will define a validation strategy for your RCL interpreter implementation. Discuss how you
chose test cases and include a representative sampling of your test cases. Quality is far more
important than quantity here. To make this process more exciting, we will run up to ten of your
submitted test cases on other students’ interpreters. You will receive bonus points if your tests
expose errors in their interpreters.

To Submit: Submit your validation strategy in validation.pdf, and up to ten test cases in
test-cases.zip. A test case is a file with a .rcl extension containing RCL code. If the RCL
program is supposed t cause a run-time error, the filename should start with the characters bad-,
e.g., bad-testl.rcl. If the program is supposed to evaluate successfully with no run-time errors,
the filename should start with good- and the first line of the file should be a comment giving the
correct value of the program and nothing else, e.g. (x 2 *).

Part 5: Written problems

There are two written parts to this assignment:

(a) The following function implements the intersection of two sets implemented as lists. Give its
asymptotic performance (you do not need to prove it). Now, write an abstraction function and
representation invariant for this implementation, and then prove the function implementation
correct using them.

fun intersect (sl: set, s2: set) =
case sl of
nil => nil
| h::t => (if contains(s2,h) then [h] else []) @ intersect(t,s2)

12

(b) Show the evaluation of the following code segment using the environment model.

let val perfect =3 + 1 + 2

fun f(g,x) =
let fun g’ () = perfect + x
in
if x = 0 then g() * g’ () else f(g’, x-1)
end
in
f ((fn () => 312),1)
end

CVS

We expect you to use CVS and to turn in your CVS log, as you will do for all group assignments
in this course. To Submit: Your CVS log showing your cvs activity during the assignment. For

this, look into the cvs log command.

13

	Introduction
	The RCL language
	Expressions
	Values
	Local and global memories
	Evaluation
	Reductions
	The external environment
	Configurations
	Creating and terminating robots

	Using the interpreter
	File structure
	Running RCL code
	String Literals

	Your task

