
Preliminary Examination II
Computer Science 312, Cornell University 20 April 2004

Solutions
1. Environment Model [27 pts] (parts a–d)

Consider the following code:

let val y = (ref "hello", "goodbye")
val z = ((#1 y) := (#2 y); 0)
fun f(x: int) = #2 y
fun g(y: int) = ref f

in
g(5)

end

(a) [2 pts] What is the type off?

Answer:

int->string

(b) [2 pts] What is the type ofg?

Answer:

int->((int->string) ref)

(c) [18 pts] Draw the result produced by evaluating this expressionin the environment model.

Answer:

"goodbye"

fn(x:int) => #2 y

fn(y:int) => ref f

TOP

y =

z = 0

f =

g =

"hello"

y = 5

result

(d) [5 pts] What garbage (other than environment entries) is generated by evaluating this program?

Answer:
The stringhello and the closure forg. Other allocated structures that are still reachable from the result
(and therefore not garbage) include theref allocated ing, the closure forf, the tuple fory, and the
stringgoodbye.

2. Data abstraction [33 pts] (parts a–d)

Suppose we want to implement a game of N-by-N tic-tac-toe using a mutable data abstraction for the board.
The following is a start at an interface:

1

(* A board is a mutable N-by-N tic-tac-toe board. *)

type board
datatype contents = X | O | Empty
(* A cell is a cell coordinate, from (1,1) up to (N,N) *)

type cell = int * int
(* create(n) creates an n-by-n board with all cells empty. *)

val create: int -> board
(* The number of cells in one row or column of the board. *)

val boardSize: board -> int
(* The number of non-empty cells. *)

val moves: board -> int
(* The contents of a board cell. *)

val getCell: board*cell -> contents
(* Set the contents of a board cell.

Requires: that cell is currently empty. *)

val setCell: board*cell*contents -> unit
(* Return whose move it is (always X or O) *)

val whoseMove: board -> contents

(a) [5 pts] Classify each of these operations as a creator, observer, or mutator.

Answer:
create is a creator,boardSize, moves, getCell, andwhoseMove are observers, andsetCell is a
mutator.

(b) [7 pts] Supply any missing preconditions.

Answer:
create requires thatn is positive (or at least nonnegative).getCell and setCell require that the
cell argument is valid, that is, that both coordinates are between 1 andN . There are two ways to make
surewhoseMove is possible. One is to require insetCell that the new contents correspond to the player
whose move it is. An alternative is to require inwhoseMove that the board is one formed by alternating
calls tosetCell.

Consider the following representation:

type board = { size: int,
X’s: cell list ref,
O’s: cell list ref }

Using this rep, here is how we might implement the functioncreate so that it takes onlyO(1) time in the board
size:

fun create(n: int) = { size = n, X’s = ref nil, O’s = ref nil }

However, some of the other operations are not so easy to implement.

(c) [15 pts] Give an appropriate representation invariant for this representation. Think about what will be
needed to implement all of the functions in the interface above.

Answer:
The fieldsize must be at least 1. All of the cells in the two lists must have coordinates that are between 1
andsize, inclusive. No two list elements have the same coordinates. If we don’t impose the precondition
onsetCell, we must also require that the lengths of the lists referred to byX’s andO’s either are equal
or theX’s list is one longer (if it is O’s move).

2

(d) [6 pts] Suggest a different representation that would permit all of the operations exceptcreate to be
implemented in timeO(1) in the board size.

Answer:
Here is one way to do it:

type board = { cells: contents array array,
num_moves: int }

Note that the parity of thenum moves field should be sufficient to decide whose move is next assuming
that X always moves first.

3. Recurrences [20 pts] (parts a–b)

The conventional algorithm for multiplying two square matrices of sizen takesO(n3) time. However, there is
an asymptotically more efficient algorithm in which the matrix is divided into smaller matrices of sizen

2 by n
2

and 7 matrix multiplications are performed on them. Thus, we arrive at the following recurrence:

T (1) = 1
T (n) = 7T (n/2)

To simplify analysis, let us consider values ofn that are powers of two.

(a) [6 pts] Is the solution to this recurrenceO(n3)? Justify your answer briefly.

Answer:
Yes, as suggested by the claim above that the algorithm is asymptotically more efficient than anO(n3)
algorithm. To see this, let’s try the substitution method. We want to substitutekn3 for T (n) in the
recurrence above:

7 T (n/2) = 7k(n/2)3 = (7/8)kn3

Becausekn3 ≥ (7/8)kn3 (for example, ifk = 1), and the functionkn3 is monotonic inn, we know
that T (n) ≤ kn3. The usual inductive argument is used to justify the substitution method:kn3 ≥
(7/8)kn3 ≥ 7T (n/2) = T (n), soT (n) is O(n3).
We can also verify this “experimentally”. Consider the sequencen = 1, 2, 4, 8, 16, In this case we
seeT (2i) = 7i andn3 = 8i, soT (n) is clearly bounded above byn3.

(b) [14 pts] Find the value ofc such that the solution to the recurrence isΘ(nc).
Answer:
Again, we can use the substitution method. We want to compareknc with the result of substitutingknc

into the right-hand side of the recurrence:

7 T (n/2) = 7k(n/2)c = (7/2c)knc

So if1 = 7/2c, this is equal toknc, and we have obtained both a lower and an upper bound onT (n).
Therefore, the solution isc = lg 7 ≈ 2.8. In practice, this algorithm is only faster than the usual
algorithm for very large matrices.

4. Type checking [20 pts] (parts a–c)

(a) [7 pts] Define a functionf with type(’a*’b) ref -> (’a ref)*(’b ref). Remember that this
function must be polymorphic.

Answer:

fun f(x: (’a*’b) ref) = let val (y,z) = !x in
(ref y, ref z)

end

3

(b) [3 pts] Give an example of two type expressions that contain unsolved type variables but that cannot be
unified.
Answer:
Two expressions cannot be unified if there is no way to make them equal by consistently replacing un-
knowns (type variables in this case) with expressions. For example, the following two type expressions
(whereT is an unknown type) cannot be unified:T-> bool, int * T

(c) [10 pts] Consider the following SML function:

fun f(x,y,z,w) =
if z(x) then (x, (y,z)) else (z(x), w)

If we let the SML type inference algorithm reconstruct types for this definition, what will be the types
inferred for the identifiersx, y, z andw?

Answer:

x: bool
y: ’a
z: bool->bool
w: ’a * (bool->bool)

4

