
1

Computer Science 312

Fall 2006

Prelim 1
March 9, 2006

 1 2 3 4 5 6 7 8 Total

Grade /12 /10 /10 /14 /8 /18 /14 /14 /100

Grader

2

1. (12 points) Given the following data type definition for a binary tree

datatype 'a tree =
 Node of 'a tree * 'a * 'a tree | Empty

Consider the following in-order fold function from Problem Set 2 that does

recursive folds on the left and right subtrees,

fun fold (f:'b*'a*'b->'b) (b:'b) (t:'a tree):'b =
 case t of
 Empty => b
 | Node(l,v,r) => f(fold f b l,v,fold f b r)

Use this definition of fold to complete the definition of the function

countLeaves so that it counts the number of leaf nodes in the tree (where a

leaf node is one that has two Empty sub-trees).

For example, given the tree,

val oneleaf =
 Node(Empty,2,Node(Empty,3,Node(Empty,4,Empty)))

countLeaves(oneleaf) is 1. Similarly, countLeaves(Empty) is 0.

You will receive 10 of 14 points on this problem for an answer that produces the

correct result and uses the fold function above. You will receive full credit if

your answer further makes no use of conditionals (case statements, if-then-else,

pattern matching, etc.).

fun countLeaves (t: 'a tree) =

 fold (fn(l,v,r) => (l+r) div 2 * 2) 1 t div 2

Or using a conditional

fold (fn(l,v,r) => if l=0 andalso r=0 then 1 else l+r)
 0 t

3

2. (10 Points) Recall that foldl , foldr and map on lists can be defined as:

fun foldl f a [] = a
 | foldl f a (h::t) = foldl f (f (h, a)) t

fun foldr f a [] = a
 | foldr f a (h::t) = f(h, (foldr f a t))

fun map f [] = []
 | map f (h::t) = f(h) :: map f t

Complete the following definition of map that produces the same results as the

one above, however is implemented using foldl or foldr (Hint: only one of

these will produce a correctly ordered result list).

fun map f s =
 foldr (fn (x, y) => (f x) :: y) [] s

3. (10 points) Recall that the Fibonacci numbers are defined such that

 fib(n) = fib(n-1) + fib(n-2)

where fib(1)= fib(2)=1 .

A naïve implementation of this has a running time that is exponential in n.

Complete the following implementation of fib such that it runs in time O(n).

fun fib (n) =
 let fun helper(a,b,n) =
 if n<=1 then b
 else helper(b, a+b, n-1)
 in
 helper(0,1,n)
 end

4

4. (14 Points) Consider the following function

val empty = fn _ => raise Fail "Empty."

And two functions insert and lookup that have the following behavior. After

inserting (a,b) a lookup of a returns b and a lookup of b returns a. For example:

- val onetwo = insert (insert empty (1,10)) (2,20);
val onetwo = fn : int -> int
- lookup onetwo 1;
val it = 10 : int
- lookup onetwo 10;
val it = 1 : int
- lookup onetwo 2;
val it = 20 : int
- lookup onetwo 20;
val it = 2 : int
- lookup onetwo 3;
uncaught exception Fail: Empty.

Complete the following definitions for the functions insert and lookup (recall that

''a is a parameterized type that must support equality.

fun insert (m:''a->''a) (k:''a,v:''a) (x:''a) =
 if x=k then v else if x=v then k else (m x)

fun lookup (m:'a->'a) (k:'a) =
 (m k)

5

5. (8 Points) Given the following two function definitions

fun trip f x = f(f(f x))
fun inc x = x+1

What is the value of the following expression?

trip trip inc 12

 39

6. (18 Points) Which of the signatures A-H listed below correspond to the function f

in each of the following expressions?

val f = fn _ => print "foo"

G) val f = fn : 'a -> unit

fun f g x = g(x)

D) val f = fn : ('a -> 'b) -> 'a -> 'b

fun f x y = let val x = y in (x;y) end

A) val f = fn : 'a -> 'b -> 'b

A) val f = fn : 'a -> 'b -> 'b
B) val f = fn : ('a -> 'b) -> 'b
C) val f = fn : ('a -> 'b) * 'a -> 'b
D) val f = fn : ('a -> 'b) -> 'a -> 'b
E) val f = fn : 'a * 'b -> 'a -> 'b
F) val f = fn : unit -> 'a
G) val f = fn : 'a -> unit
H) val f = fn : unit -> unit

6

7. (14 Points) In this problem you are to use the pattern matching style of functions

(as in the definitions of fold and map in problem 2). You may not use any form of

conditional (case, if-then-else, etc.).

Given two Boolean arguments nand determines whether either of them is false:

- nand(true, true);
val it = false : bool
- nand(true,false);
val it = true : bool
- nand(false,true);
val it = true : bool
- nand(false,false);
val it = true : bool

Write a pattern matching function for nand that has as few patterns as possible.

fun nand(true, true) = false
 | nand(_,_) = true

Given a natural number and a list firstn returns the first n elements of the list:

- firstn(3,[1,2,3,4,5,6])
val it = [1,2,3] : int list

Write a pattern matching function for firstn that has as few patterns as

possible.

fun firstn(0, _) = []
 | firstn(_,[]) = []
 | firstn(n, h::t) = h::firstn(n-1,t)

7

8. (14 Points) Consider the following signature and partial implementation of an

ordered set that has operations to create a singleton set, to compute the

union of two sets and to remove an element from a set. Note that union and

remove take as one of their arguments a comparator function, which given two

elements of type 'a determines whether the first argument is less than, greater

than or equal to the second.

signature ORDEREDSET =
 sig
 type 'a oset
 val singleton: 'a -> 'a oset
 val union: 'a oset * 'a oset
 * ('a * 'a -> order) -> 'a oset
 val remove : 'a oset * 'a
 * ('a * 'a -> order) -> 'a oset
 end

structure oset : ORDEREDSET =
 struct
 type 'a oset = 'a list
 fun singleton(a) = [a]
 fun union(s, t, cmp) = ?????
 fun remove(s, a, cmp) =
 case s of ([]) => []
 | h::t =>
 case cmp(h,a) of
 EQUAL => t
 | LESS => h::remove(t,a,cmp)
 | GREATER => s
 end

What missing code should go in place of ??? to complete this implementation?

case (s,t) of
 ([],x) => x
| (x,[]) => x
| (hd1::t1,hd2::t2) =>
 case cmp(hd1,hd2) of
 EQUAL => hd1::union(t1,t2,cmp)
 | LESS => hd1::union(t1,t,cmp)
 | GREATER => hd2::union(s,t2,cmp)

