Cornell University 12 Oct 2006

Solutions
1. Types, Polymorphism [14 pts]  (parts a-b)

(a) [9 pts]  For each of the 3 functions below, pick an appropriate type for it from
the list below.

i. fun f xy = (y, %)
(B) ’a => b -> (b * ’a).
ii. fun f (x, y) z=2zy

(D) (’a * ’b) > (°b -> ’c) -> ’c.

iii. fun f x y = fn y => (y, x)

(G) ’a => b => ’c > (’c * ’a)

(’a * ’b) -> ’c => ’b

’a => b > (b * ’a)

(’a * ’b) -> (b * ’a)

(’a * ’b) -> (b -> ’c) > ‘¢
’a => b > ’c > (b * ’a)
(’a *x ’b) -> ’c -> ’c * ’b
G. ’a > "’b ->’c > (’c x ’a)

mEYaw

(b) [5 pts] Write a datatype declaration that describes a list structure with elements
of alternating types. That is, odd elements have some type ’a, and even elements
have some type ’b.

Answer:

datatype (’a,’b) list = Nil | Cons of ’a * (’b,’a) list
2. Pattern matching [18 pts] (parts a-b)

(a) [8pts] The following datatype describes syntax trees for arithmetic expressions:



Const of int
Plus of expr * expr
Times of expr * expr

datatype expr

Use pattern matching to implement a function trans: expr -> expr that trans-
forms an expression e into an equivalent expression by distributing multiplication
over addition for all subexpression of e. Make sure you identify all cases where
this transformation is applicable.

Answer:

fun trans(e: expr): expr =
case e of
Times(el, Plus(e2,e3)) => Plus(Times(trans el, trans e2),
Times(trans el, trans e3))
| Times(Plus(el,e2), e3) => Plus(Times(trans el, trans e3),
Times(trans e2, trans e3))
| => ¢

(b) [10 pts] ~ Write a function zip : int list * int list -> int list com-
bines two lists a and b by inserting the i-th element of a before the 2i-th element
of b. If list b is too short, excess elements are appended. For example:

zip([l, 2, 3, 41, [11, 12, 13]1) = [1, 11, 12, 2, 13, 3, 4]
Answer:

fun zip(a: int list, b: int list): int list =
case (a, b) of
(x::tx, yriy’:iity) => x::y::y’::izip(tx, ty)
| (x::tx, [y]) => x:i:y::itx
I (., ) =>a
| (00, ) =>b

3. Using fold functions [20 pts] (parts a—c)

Absolute frequency distributions are obtained by dividing a data set into several classes
and then counting the number of elements in each class. For example, an absolute fre-
quency distribution for student grades in this exam can be constructed by considering
the grade ranges (0-10), .., (80-90), (90-100), and counting the number of students in
each range. We'll represent frequency distributions as lists of integers.

A histogram is a graphical representation of a frequency distribution graphically, as a
sequence of vertical bars. The height of each bar indicates the frequency at that point.
We want to write a function histogram that prints out a histogram in text form. For
instance, histogram([3,1,2] must produce the following output:



*
* %
*ok ok

Below is a sketch of the code for this function. The function assumes that each element
in the input list is non-negative.

fun histogram(dist: int list): unit

let

val num: int = ...

fun line(i: int): string =

fun show(i: int): string = if i = O then ""

else (line i) ~ "\n" ~ (show(i-1))

in

print (show num)
end

The code for num and 1line can be implemented concisely using list folding operations.
Recall the following definition:

fun foldl £f v 1 = case 1 of nil => v
| h::t => foldl f (f(h,v)) t

(a) [6 pts]  Write the appropriate code for num using foldl.

Answer:
val num: int = foldl Int.max O dist

(b) [6 pts] ~ Write function line using list folding.
Answer:

fun line(i: int): string =
foldl (fn (x,a) => a"(if x < i then " " else "x")) "" dist

(c) [8pts] A cumulative distribution is similar to an absolute frequency distribution,

but for each range it counts the elements in that range, plus all elements in the
smaller ranges.
Write a function cumulative that converts an absolute frequency distribution
into a cumulative distribution. For instance: cumulative([3,1,2])=[3,4,6].
Implement this function using foldl. Make sure that elements in your result are
properly ordered.

Answer:

fun cumulative(dist: int list): int list =
rev( #2( foldl (fn(x,(y,z)) => (x+y,x+y::z)) (0,[1) dist ) )



4. Data Abstraction [18 pts]  (parts a-b)

The following signature models sets of integers:

signature INTSET = sig
(x A "set" is a set of integer values *)

type set

(* The empty set *)
val empty: set

(* insert(n, s) adds integer n to set s *)
val insert: int * set -> set

(* remove(n, s) deletes integer n from set s *)
val remove: int * set -> set

(x equal(s,t) is true if sets s and t contain the same values *)
val equal: set * set -> bool
end

For sets that contain many consecutive numbers, it is more efficient to use value ranges,
rather than enumerating all values. It is appropriate to represent such sets as lists of
pairs, where each pair denotes an integer range:

type set = (int * int) list
In addition, we want to implement set equality in a straightforward manner:

val equal(s: set, t: set): bool = s =t

(a) [6 pts] Define an appropriate representation invariant that would make the
above implementation of equal correct.
Answer: A list [(ag, a1), (az,as), .., (agn, @2n+1)] must be such that:

o All ranges are valid:
g < agi1, for alli

o All ranges are disjoint, not adjacent, and in increasing order:
aziy1 < Agipz — 2 for all i

The representation invariant ensures that each set has a unique implementation.
Therefore, set equality via list equality is correct.



(b) [12 pts]  Finish the implementation below for function remove, by filling in the
inner case statement. Do not use other if or case statements in the remaining
of the code.

You may find it helpful to use the function Int.compare: int * int -> order
to compare two integers and obtain their ordering: LESS, EQUAL, or GREATER. You
must ensure that your code maintains the representation invariant.

Answer:

fun remove(n: int, s: set): set =

case s of

nil => nil
| (a,b)::t => case (Int.compare(n,a), Int.compare(n,b)) of
(LESS, _) => s
| (EQUAL, EQUAL) => t

| (EQUAL, _) => (a+1,b)::t
| (_, EQUAL) => (a,b-1)::t
| (_,LESS) => (a,n-1)::(n+1,b)::t
[ => (a,b)::remove(n,t)

5. Complexity [20 pts] (parts a—c)

Consider the following implementation of list reversal:

fun reverse(l: int list): int list =
case 1 of nil => nil

| x] => [x]
| _ => let
val n = List.length(1l) div 2
val x = List.take(1l, n)
val y = List.drop(1l, n)
in

(reverse y) @ (reverse x)
end

The complexity of an append operation a @ b is O(n) in the length of the first list a.
Function List.length is O(n) where n in the length of its input list.

Function List.take(l,n) returns the first n elements of list 1, and List.drop(1,n)
returns the remaining elements. Both of these functions are O(n) where n is their
integer argument.

(a) [5 pts]  Write a recurrence for the running time of reverse.



Answer:

T(O) =
T(l) Co
T(n) = 2T(n/2)+ csn+ca, forn >1

(b) [10 pts] ~ What is the complexity of reverse? Prove your answer.
Answer:
The complexity is O(n log n).
Take ¢y = ¢ = c3 = 1. Ignore ¢4 because it is subsumed by c3n. Therefore:

T(0) = T(1) = 1
T(n) = 2T(n/2)+n, forn>1

We show that T'(n) < n+n log n, for alln >= 1, using strong induction on n.
Induction statement. P(n) = T(n) < n+n log n.

Base casen=1. T(1) =1 =1+ llogl.

Induction Hypothesis. Assume that T'(k) < k+ k log k, for all k = 0,...,n for
some n > 1.

Induction Step. Prove that T'(n+ 1)leq(n + 1) + (n+ 1) log(n + 1). We have :

= 2T((n+1)/2)+ (n+1) (because n > 1)

< 2((n+1)/2log((n+1)/2)+ (n+1)/2) + (n+ 1)
(by IH, because (n+1)/2 < n)

= (n+1)log((n+1)/2)+2(n+1)

= (n+1)log(n+1)

T(n+1)

This completes the proof. Hence T'(n) < n-+n log n, so T(n) is O(n log n).

(c) [5 pts]  Write a list reversal function reverse2 that runs faster than reverse
for large lists. Needless to say, List.rev is not accepted as an answer.

Answer:

val reverse2 1 = foldl List.:: nil 1

6. Evaluation [10 pts]

Consider the following function:

fun foo (n: int) (f: int->int): int =
if n < 3 then f(n)
else foo (n-1) (fnm => f(n * m))

(a) [7 pts]  Write the evaluation of expression foo 3 (fn x=>x+1).
Write your solution using reductions of the form e -> e’. You may find it useful
to name function values and use their names during evaluation. Here is an example
of an evaluation using reductions:



(fn x => fn y => y x) 2 (fn x => x)
-> (fny =>y 2) id
[where id = fn x => x]
-> id 2
-> 2

Answer:

foo 3 (fn x => x)
-> (fn £ => if 3 < 3 then £(3)
else foo (3-1) (fnm => £(3 * m))) f1
[where f1 = fn x => x+1]
-> if 3 < 3 then f1(3) else foo (3-1) (fn m => f1(3 * m))
-> if false then f1(3) else foo (3-1) f2
[where f2 = fn m => f1(3 * m)]
-> foo (3-1) f2
-> foo 2 f2
-> (fn f => if 2 < 3 then f(2)
else foo (2-1) (fnm => f(2 * m))) f2
-> if 2 < 3 then f2(2) else foo (2-1) (fn m => f2(2 * m))
-> if true then f2(2) else foo (2-1) £3
[where f3 = fn m => £f2(2 * m)]

-> £2(2)
-> f1(3 * 2)
-> £1(6)
-> 7
(b) [3 pts] Given a number n > 0 and and arbitrary function f, what does the

expression “foo n f”7 compute?
Answer: [t computes £(n!)



