CS 312 Data Structures and Functional Programming
Fall 2005

Prelim I Solutions 10/13/2005

NAME:
CU ID: Net ID:

Section instructor

You have one and a half hours to do this exam.

All programs in this exam must be written in SML.

SOLUTIONS

1. (Types, 10 points)

e fun f x =x _(a)_

e fun f x y = let val x = y in SOME (x*y) end ___ (i)____
e fun f x y = if x then NONE else SOME (not x) __(c)____
o fun f(x,y) =

case y of nil => x | u::t => (SOME w)::f(x,t) _(g)___

e fun foo f a 1 =
case 1 of nil => a | u::t => foo £ (f(u,a)) t___(h)____

e fun Kxy=x__(d)_

e fun f (ref a) = a__(e)___

e fun wrap f = let val counter = ref 0 () _____
in (fn x => (counter := !counter + 1; f x),
fn () => !counter
)
end
e fun f a b= (a :=!a+1; 'b) _(f)___
(a) ’a -> ’a
(b) (’a -=> ’b) -> (’a -> b)*(unit -> int)

bool -> ’a -> bool option

)a ->)b ->)a

int ref -> ’a ref -> ’a
’a option list * ’a list -> ’a option list
(’a*x’b ->’b) -> ’b -> ’a list ->’b

)
)
)
)
e) ’a ref -> ’a
)
)
)
)

’a -> int -> int option

2. (Tree reduce, 15 points)

In class, we defined a reduction operator as a commutative and as-
sociative function, and showed how to write a function that applies
a reduction operator to the elements of a list. Write a curried func-
tion that takes a reduction operator, an initial value and a binary tree
as input, and applies the reduction operator to the initial value and
the elements of the binary tree. Your code must specify the type of
this function. You may assume that the binary tree is built from the
following datatype.

datatype ’a binaryTree =
LEAF of ’a
| NODE of ’a binaryTree * ’a binaryTree * ’a

For example, reduce (op+) 4 (NODE(LEAF(1),LEAF(2),3)) should
evaluate to the value 10.

Solution:

fun reduce (f:’a*x’b->’b) (z:’b) (t:’a tree) =
case t of
(LEAF (n)) = f (n, z2)
| (NODE(1,r,d)) => reduce f (f (d, reduce f z 1)) r

Alternative solution:

fun reduce f z t =
let fun redl t =
case t of
(LEAF(n)) =>n
| (NODE(1,r,d)) => f(d,f(redl r,redl 1))
in f(z,redl t)
end

3. (Properties of foldl, 20 points)
Consider the following assertion about the foldl function.
foldl f f(x,a) 1 = foldl f a (x::1)

Answer the following questions.

(a) Is the statement true for any function f (assume the type of the
function is appropriate)?

(b) If the statement is true, prove it. If not, give a counter-example.

(c) Is your proof an induction? If so, explain clearly what the induc-
tive hypothesis and inductive step are. If not, explain why your
proof is not an induction.

For your convenience, the definition of foldl is shown below.

fun foldl f a nil = a
| foldl f a (h::t) = foldl f (f(h,a)) t

Solution:

(a) Statement is true.
(b) There are two cases.
Case 1: empty list.
foldl f f(x,a) []
foldl f a (x::[1)

f(x,a) (by definition of foldl)
foldl f f(x,a) [1 = f(x,a) (by defof foldl)

Therefore, Case 1 is proved.

Case 2: non-empty list (h::t)
foldl f f(x,a) (h::t)

= foldl f f(h,f(x,a)) t (by definition of foldl)
foldl f a (x::h::1) = foldl f f(x,a) (h::1)

= foldl f f(h,f(x,a)) 1 (by definition of foldl)
Therefore case 2 is proved.
Conclusion: theorem is true for all lists.

(¢) The proof looks inductive but it is not because the proof of Case 2
did not use any assumptions about other (smaller) lists.

4. (Induction on integers, 20 points)

Use induction to prove the following results. Your answers must state
clearly (i) the base case or cases, (ii) the inductive hypothesis, (iii) the
inductive step, and (iv) the conclusion.

(a) (1—31)(1—;)...(1—;):”221 for n > 2

(b) Show that

m! (m—l—l)!+ (m—+n)! (m+n+1)!

o n nl(m+1)

where m and n are non-negative integers. Hint: you can do an
induction on either m or n, but the induction on n is easier.

(a) (10 points)

e (2 points) Base case: forn =2, (1-1/4) =3/4 = (2+1)/2*2
= 3/4.

e (2 points) Inductive hypothesis: assume the result is true for
some integer k > 2.

e (6 points) Inductive step:

~ D= 51— i)

(
(1= (1= Dll = B)1 = k)

(k+2)

2(k+1)
as desired.

e Conclusion:
(1- i)u _ é)(l _ %) = ”2—21 forn > 2

(b) (10 points)

e (2 points) Base case:
m! _ (m+1)! _ m!
o T 0l(m+1) — of
e (2 points) Inductive hypothesis: for some integer k£ > 0
m! (m+1)! (m+k)! _ (m+k+1)!
ot et = kl(m+1)

e (6 points) Inductive step:
m! (m+1)' (m—l—k)' (m+k+1)!
o ot T %

_ (m+k+1)' + (m+k’+1)

— Kl (m+1) (k+1)!
(k+1)(m+k+1)4(m+1) (m+k+1)!
(k+1)K!(m+1)

_ (k+14+m+41)(m+k+1)!
- (k+1)!(m+1)

_ (m+k+2)!

— +rD)!(m+1)
Conclusion:

g bty Ll Dbt ! for all m,n > 0.

5. (Using foldl, 20 points)
For each of the following functions, show how to use foldl to re-implement
the function in one or two lines, without using case, hd, t1 or nth. Your
answer must specify the type signature of the function used to perform
the fold.

e Given a list of integers, find the sum of all elements after the first
0 in the list. Here is a function that computes this without using

foldl.
fun afterZero 1 =
let
fun summer 1 =
case 1 of
nil => 0
|h::t => h + summer t
in
case 1 of
nil => 0
|0::t => summer t
|h::t => afterZero t
end

fun afterZero (1l:int list): int =
#2 (foldl (fn (e: int,(b: bool,sum: int)) =>
if b orelse (e = 0) then (true,sumte)
else (false,sum))
(false,0) 1)

e Given a list 1, return a list containing every n'* element of the
list. Here is a function that computes this without using foldl.
You may use List.rev in your solution.

fun everynth(l,n) =
let
fun iter(1,counter) =
case (1,counter) of

a,.) = [
| (x::xs,1) => x::(iter(xs,n))
| (x::x8,c) => iter(xs,c-1)

in iter(l,n)

end

fun everyNth(l: ’a list, n:int):’a list =
List.rev (#2(foldl (fn (elt: ’a, (c: int, lst: ’a 1lsit)) =>
if (¢ = 1) then (n, elt::1st)
else (c - 1, 1st))
(n, 1) 1))

6. (Bytecode interpreter, 15 points)

In this problem, you have to implement a bytecode interpreter for an
abstract stack machine called SaMueL. SaMueL operates only on inte-
gers and it has the following instructions:

e PUSHIMM integer : the integer value is pushed on the stack

e ADD: pop two values from the stack, add them, and push the
result on the stack. Raise an exception tooFewOperands if there
are fewer than two operands on the stack.

e STOP : pop the topmost value on the stack and return it as the
result of evaluating the program. Raise tooFewOperands if the
stack is empty.

Instructions are executed sequentially until the STOP instruction is
encountered. For example, the program

PUSHIMM 2
PUSHIMM 3
ADD

STOP

should return the value 5.

Fill in the rest of the shell shown below to produce an interpreter for
SaMueL. The function SaMueL will be called with a list of instructions
and an empty stack. If the interpreter runs out of instructions before
encountering a STOP instruction, it should raise the tooFewlInstruc-
tions exception.

Solution:

datatype bytecode = PUSHIMM of int | ADD| STOP
type code = bytecode list

type evalStack = int list

exception tooFewOperands and tooFewlInstructions

fun SaMuel (program:code) (st:evalStack) =
let
(*like hd but raises tooFewOperands exception if list is nil *)
fun chkHd 1 = if (1 = nil)
then raise tooFew(perands
else hd(1)
in
case program of
nil => raise tooFewInstructions
| (h::t) => case h of
STOP => chkHd(st)
|PUSHIMM i => SaMueL t (i::st)
|ADD => SaMueL t ((chkHd(st)+chkHd(t1l(st)))::t1(t1(st)))
end

Alternative solution

fun SaMuel (program:code) (st:evalStack) =
case (program, st) of
., => raise tooFewInstructions
| (STOP::t, e::_) => e
| (PUSHIMM(i)::t, _) => SaMueL t (i::st)
| (ADD::t, a::b::s) => SaMuel t ((a+b)::s)
| => raise tooFewOperands

10

