Preliminary Examination |
Computer Science 312, Cornell University 11 March 2004

Solutions
1. True/False [10 pts]

(parts a—e; 4 points off for each wrong answer, 2 points off for each blank answer, minimum problem score 0.)
(a) In a data abstraction, a given abstract value may be represented by more than one concrete value.
True
(b) In SML, unbound variables are always detected at compile time.
True
(c) Polymorphism is the language feature that provides recursive datatypes.
False
(d) The foldl function is tail-recursive.
True
(e) Black-box test cases are written without reading the implementation that is being tested.
True

2. Specifications [20 pts] (parts a—e)
Consider the following specifications and code for functions named f of type int*int->int:
(1) fun f(x:int, y:int):int
Int.abs(x) + 1

(2) fun f(x:int, y:int):int
xX+y

(3) fun f(x:int, y:int):int
if x < y then y else x

(@) (x £(x,y) =x + 1. (4) fun f(x:int, y:int):int =
* Requires: x >= 0 *) case (x,y) o
(b) (x f(x,y) >= 0. 0,.) =>y
| _ =>x

* Requires: x >= 0 & y >= 0 %)

() (x f(x,y) =x+y (5) fun f(x:int, y:int): int =

* Requires: x >= 0 & y >= 0 *) 1e1?ffun géz: int) =
if z =
(d (*x £(x,y) >= 0 then x
* Checks: x > 0 *) else g(z-1)
in
(e) (x f(x,y) = x ()
* Requires: x > y *) end

(6) fun f(x:int, y:int):int =
let val z = (if x < 0
then 0
else x)
in
y div z
end

For each of the specifications (a)—(e), identify the names of the function declaration or declarations in (1)—

(6)

that implement it. Some specifications might not be implemented by any function; some might be implemented
by more than one function; some functions might implement no specifications or might implement multiple

specifications.

(a) [4pts] 1

(b) [4pts] 11,2345

(c) [4pts] 2

(d) [4pts] none (6 fails when y < 0)
(e) [4pts] 3 (5fails wheny < 0)

3. Evaluation [17 pts] (parts a—c)

Consider the following function definition:

fun f(p, xs: int list) =
case xs of
0=,
| x::t => 1let val (ys,zs) = (£(p, t)) in
if x > p then (ys, x::zs) else (x::ys, zs)
end

(a) [4pts] The implementer has not been reading the CS 312 style guide carefully and have left off some

type declarations. What are the types of p, ys, and zs, and £?

Answer:

p:int, ys: int list, zs: int list,f: (int * int list) -> (int list * int listy

(b) [5pts] Given this function definition, what is the value that results from evaluating the expression £ (
(2,4,1,5])?

Answer:

([2,11, [4,5])

)

w

>

(c) [8pts] Write a specification for the function £ that is deterministic, definitional, and has no precondition.

Be concise but accurate.

Answer:

f(p, xs) is a pair of lists (ys, zs) where ys contains all the elements in xs
are at most p, in the order they occurred in xs, and zs contains all the eleme
in xs greater than p, also in the order they occurred.

4. Data Abstraction [33 pts] (parts a—f)

that
nts

The following is the interface and implementation of a data abstraction written by someone who missed the

lecture on documenting implementations.

signature INTERVAL = sig

(* An interval ts a (possibly empty) contiguous set of integers; that is,
* o (possibly empty) set of n integers [a,b] = {a, a+l, * a+2, ..., b}.
* (Note that [a,b] ts ordinary mathematical notation, NOT an SML list!)
* Ezamples: O, [0,2], ["2,~1], [~1,102] *)

type interval

(* create(z,y) ts the set of integers n such that z<=n<=y. *)
val create: int*int -> interval

(* top(a) is the largest integer in a. *)

val top: interval -> int

(* bottom(b) ts the smallest integer in a. *)

val bottom: interval -> int

(* The number of elements in the interval. *)

val size: interval -> int

(* join(a,b) is the smallest interval including both a and b *)
val join: interval*interval -> interval

(* intersect(a,b) is the largest interval included in a and b *)
val intersect: intervalxinterval -> interval

end

structure Interval :> INTERVAL = struct
type interval = int*int
fun create(al0: int, al:int): interval = ...
fun size((a0,al)) => a1l - a0 + 1
fun top(al,al) = al
fun bottom(al,al) = a0
fun intersect((a0,al), (b0, bl)) =

create (Int.max(a0,b0), Int.min(al, bl))

fun join(a,b) = ...

end

(a) [8 pts]

(b)

(©

requires clause is needed, and give a requires clause that addresses the problem you have identified.

Some of these methods need requires clauses. Which are they? For each method, explain why a

Answer:
top and bottom need a precondition that the interval in question cannot be empty. Technically, the r¢
of the size method also is undefined if the number of elements in the interval is at least 23', so we m
rule that out with a precondition, too. Alternatively we could say that an interval can only repre
intervals containing at most 23' — 1 elements; this would show up in the ADT overview and as a requ
clause for create.

A number of people imposed a precondition on the create function in an attempt to rule out calls
create(5,3). This wasn’t necessary because the specification for create is perfectly clear about

should happen in this case: you get the empty set. Further, the people who did this often either made it
possible to create the empty set or broke the intersect implementation. Some went further and impq
new requirements on intersect and join,; however, this unnecessarily made the whole abstraction m
less useful.

specification of the abstraction function that this implementation uses.

Answer:

al.

sult
ight

ent
ires

like
hat
im-
sed
uch

[4 pts] The implementer has failed to give an abstraction function and representation invariant. Give a

The representation (a0,al) represents the (possibly empty) set of integers that are at least a0 and at most

[4 pts] Give arepresentation invariant that is strong enough to prove that all of the implemented functions
work correctly. (Do not give the proofs.) Make sure your rep invariant agrees with the abstraction function

given just previously. Hint: look at the function size.

Answer:

There is more than one right answer to this question, depending on how create is implemented. Here is
the weakest rep invariant that permits a working implementation: A representation (a0,al) satfisfies
al > a0 - 1.

(d) [6 pts] The create function is unimplemented. Write an implementation that meets the specification
and ensure the rep invariant.

Answer:

There is more than one way to implement this function because there is more than one representation for
the empty set with the rep invariant given above. Here is one implementation:

fun create(a0: int, al:int): interval = if (al < a0) then (1,0) else|(al,al)

(e) [6pts] The join function is unimplemented. Write an implementation that satisfies the given specifica-
tion and preserves the representation invariant. Hint: Look at intersect, but don’t copy it.

Answer:

case (size(a), size(b))
(L, 0) => a
[(0, J) =>D
| _ => create (Int.min(a0,b0), Int.max(al, bl))

(f) [5pts] One possible test case for the function joinis join([I, 3], [2,4]) (where Roman font is used
here to indicate abstract interval values rather than SML lists).
Suggest five more good black-box test cases for join that provide as much coverage as you can achieve.
For each test case, write three or four words (a full sentence is not necessary) explaining how it improves
coverage. You will lose points for providing redundant test cases.

Answer:
join([1,2], [3,3]) disjoint abutting, single-element set
join([10,100], [0 2] disjoint separate, higher is first arg
join([-1,0], [-1,0] same value, negative range, zero top
join(@, [0 ,MAXINT]) empty set, maximum int
join(0,) single-element set, empty set as second arg

Other useful tests include intervals with the minimum integer, an interval that covers all ints, interpals
that contain one another, intervals that overlap in exactly one element. As long as each of your tests was
sufficiently distinct from the others and you identified why, you received full credit.

5. Complexity and Induction [20 pts] (parts a—c)

Consider the following function:

fun f(n: int): int =
if n <=1
then n
else f(n div 2) + f((n+1) div 2)

(a) [6pts] Given this function definition, show every step in the evaluation of the expression £ (3) according
to the evaluation model given in class. For each step, put an underscore under the subexpression that is
being reduced. For brevity, you may use ellipses (...) to abbreviate unchanged parts of the expression
carried over from the previous evaluation step or from the definition of £.

Answer:

f(3) —if 3 <= 1 then 3 else f(3 div 2) + £((3+1) div 2)

—if false then 3 else f(3 div 2) + f((3+1) div 2)

—f(3 div 2) + f((3+1) div 2)

—f(1) + £((3+1) div 2)

——(if 1 <= 1 then 1 else f(1 div 2) + f((1+1) div 2)) + £((3+1) div 2)
——(if true then 1 else ...) + f((3+1) div 2)

—1 + £((3+1) div 2 —1 + f(4 div 2) —1 + £(2)

—1 + (if 2 <= 1 then 2 else f(2 div 2) + f((2+1) div 2))

—1 + (if false then 2 else f(2 div 2) + f((2+1) div 2))

—1 + (£(2 div 2) + £((2+1) div 2)) —1 + (£(1) + £((2+1) div 2))
—1 + ((if 1 <=1 then 1 else ...) + f((2+1) div 2))

—1 + ((if true then 1 else ...) + f£((2+1) div 2))

—1 + (1 + £((2+1) div 2))) —1 + (1 + £(3 div 2)) —1 + (1 + £(1))
—1 + (1 + (if 1 <= 1 then 1 else ...))

—1 + (1 + (if true then 1 else ...))

—1 + (1 +1) —1 +2—3

(b) [8 pts] Prove using induction that £ (n) = n for all nonnegative n. Be sure to state clearly what you are

proving and what your induction hypothesis is.
Claim: We claim £ (n) is n for all nonnegative n. We will show this using strong induction on n.

Looking at the definition of £, we see that neither £ (0) nor £ (1), will follow the same pattern as £ when
applied to a larger integer. While strictly speaking only £ (0) needs to be considered as a base case, £ (1)
needs to be handled specially.

First Base Case:n = 0

Apply the substitution model to £ (0)

— £(0)

—— if 0 <= 1 then 0 else f(0 div 2) + f£((0+1) div 2)
—— if true then 0 else f(0 div 2) + f£((0+1) div 2)

—s 0

Therefore £(0) = 0.

Second Case: n = 1

Apply the substitution model to £ (1)

— (1)

—— if 1 <= 1 then 1 else f(1 div 2) + £((1+1) div 2)
—— if true then 1 else f(1 div 2) + £((1+1) div 2)

—s 1

Therefore £ (1) = 1.

Inductive Step: Assuming the inductive hypothsis, £ (n) = nforall n < k, where k is a fixed integer and
k > 1, we want to prove that £(k + 1) = k 4 1 (using the underline to distinguish between the integer
value k + 1 and the language expression k+1).

Apply the substitution model to £ (k£ + 1):

— f(k+1)

— if E+1 <=1 then 1 else £((k+1) div 2) + £(((k+ 1)+1) div 2)

By assumption k > 1,s0 k + 1 > 2 and

—— if false then 1 else f((k+1) div 2) + f(((k+1)+1) div 2)
— f((k+1) div 2) + £(((k+ 1D)+1) div 2)

Noting that x div 2 < x and applying the inductive hypothesis we find

— ((k+1) div 2) + (((k+1)+1) div 2)

In the event that k + 1 is even we reduce to:

((E+1) div 2) + (((k+1)+1) div 2)
(k/2) + (((k+1)+1) div 2)

(&/2) + ((k+2) div 2)

52) + (k2 + 1

k+1

—~|—

LEEL

In the event that k& + 1 is odd we reduce to:

(k+1 div 2) + ((k+1+1) div 2)
(k+1)/2 + ((k+1+1) div 2)
F+D)/2 + ((k+2) div 2)
ErD)/2 + (k+1)/2

k+1

—~—

FEET

In both k£ 4 1 positive and negative cases we see that £ (k + 1) = Vk+1. This proves the inductive case.
Therefore, we find that £ (n)=n for all nonnegative n.

(c) [6pts] Give a recurrence for the running time 7'(n) of the function. You may simplify constant factors.

Answer:

T(”)ZCO+T(g) +T<”42'1>

or simply
T(n)=14+2%T(n/2)

is good enough. The solution is O(n). You can’t drop the O(1) term entirely because then the recurrdnce
has a different solution: T'(n) = 0.

