
Preliminary Examination I
Computer Science 312, Cornell University 6 March 2003

Solutions

1. True/False [10 pts]

(parts a–e; 4 points off for each wrong answer, 2 points off for each blank answer,
minimum problem score 0.)

(a) SML variables have lexical scope.

True

(b) A value is polymorphic if it has a single type.

False

(c) Weak specifications should be avoided.

False. A lot of people got this one wrong. In general a specification should be
just strong enough to allow users to do what they need. A weak specification

gives the implementer flexibility.

(d) Both ‘requires’ and ‘checks’ clauses state preconditions.

True. It is an error for a caller to violate the condition stated in either a
requires or a checks clause.

(e) Higher-order functions are functions that return types rather than ordinary values.

False

2. Abstraction [30 pts] (parts a–e)

The following is the interface and implementation of a data abstraction:

1

signature SORTED SEQUENCE = sig

(* A "sequence" is a sorted sequence: a possibly empty

* sequence of integer elements [m1, m2, ... mn] in

* ascending (nondecreasing) order.

* Examples: [~1,2,3], [0,2,3,3], []

*)

type sequence

(* empty() is an empty sequence. *)

val empty : unit -> sequence

(* add(s,n) is the sequence containing n and all the

* elements in s. *)

val add: sequence*int -> sequence

(* prepend([m1,...,mn], m’) is the sequence [m’, m1,...mn]. *)

val prepend: sequence*int -> sequence

(* nth(s,n) is the nth element of s (indices start at zero). *)

val nth: sequence*int -> int

(* size(s) is the number of elements in s. *)

val size: sequence -> int

end

structure SortedSeq : SORTED SEQUENCE = struct

type sequence = int * int list

fun empty() = (0, [])

fun add((sz, lst), m) = raise Fail "Implement me!"

fun prepend((sz, lst), m) = (sz+1, m::lst)

fun nth((sz, lst), n) = List.nth(lst, n)

fun size(sz,lst) = sz

end

(a) [8 pts] Two of these methods need requires clauses. Which are they? For each
method, explain why a requires clause is needed, and give a requires clause that
addresses the problem you have identified.

Answer:

prepend: The output according to specification is not a sorted sequence un-
less m is no larger than any element in the sequence. Needs a requires clause,
“Requires: no element in sequence is smaller than m”.
nth: The argument n could be out of bounds. Need a requires clause, “Requires:
0 ≤ n ≤ size(s)− 1”.
Many people identified the right preconditions, but gave a subtly wrong reason.
They wanted to change the specification because the implementation couldn’t
handle those inputs. The real reason that the spec needs to be changed is that
in both cases the spec does not make sense when considered for the bad in-
puts. For example, they noted that allowing prepend to accept a number greater
than the first element would break the rep invariant. The real problem is that
[m′, m1, ...,mn] would not be a sorted sequence in that case.

2

(b) [4 pts] The implementer has failed to specify an abstraction function. Give a
specification of the abstraction function that this implementation uses.

Answer:

The representation (sz,[m1,...,mn]) represents the ordered sequence
[m1, . . . ,mn].

(c) [4 pts] The implementer has failed to write a representation invariant. Give a
representation invariant that is strong enough to prove that all of the implemented
functions work correctly. (Do not give the proofs.)

Answer:

Representation invariant: given a representation (sz, lst), sz is the length of
the list lst and the elements of lst are in ascending order.

(d) [8 pts] The add function is unimplemented. Write an implementation that satisfies
the given specification and preserves the representation invariant.

let fun ins(lst, m) =

case lst of

nil => [m]

| h::t => if h > m then m::lst

else h::(ins(t, m))

in

(sz+1, ins(lst, m))

end

(e) [6 pts] One test case for the function add is add([1, 2, 4, 5], 3). Give up to eight
more good black-box test cases for the function add, which collectively provide
good coverage. For each test case, write three or four words explaining how it
improves coverage. You will lose points for providing redundant test cases.

Note: in the example test case, [1, 2, 4, 5] represents a sequence, not an SML list,
which is hinted at by its font. For brevity, use this list-like notation in your test
cases.

Answer:

add([1, 3, 5], 0) Add at beginning
add([1, 3, 5], 6) Add at end
add([1, 3], 1) Add duplicate
add([], 1) Add to empty list
add([1], 1) Add to one-element list
add([1, 1, 1], 1) Add duplicate of repeated element

Other useful tests include adding the maximum and minimum integers, and
checking whether negative numbers are handled correctly.

3. Zardoz [20 pts] (parts a–d)

For each of the following expressions, give a value that causes the expression to evaluate

3

to 42 if the box is replaced by that value. A list of values [v1, . . . , vn] is considered

a value.

(a) [5 pts]

let val f: string list =

in

case List.map(fn(x) =>

case Int.fromString(x) of

SOME n => n

| => 0) f of

x::y:: => x*10 + y

| => 41

end

Answer: ["4", "2 "]

(b) [5 pts]

let fun zardoz(x:int):int list =

if x = 0 then [] else x::zardoz(x-1)

in

case zardoz() of

w::x::y::z => x*y

end

Answer: 8

(c) [5 pts]

let fun zardoz(b: bool list):int =

case b of

nil => 0

| true::b’ => 1 + 2*zardoz(b’)

| false::b’ => 2*zardoz(b’)

in

zardoz

end

Answer: [false, true, false, true, false, true]

(d) [5 pts]

let val f = in

17 + (#2 (f(12, "hello"))) + (#1 (f("goodbye", 13)))

end

Answer: fn(x,y) => (y,x)

4. Correctness and Evaluation [30 pts] (parts a–e)

Consider the following implementation of a factorial function:

4

fun f(m,n) = if n = 1 then m else f(m*n, n-1)

(* fact(n) is n! *)

fun fact(n) = f(1,n)

(a) [3 pts] Critique the specification of the function fact. How would you change
this specification to make it better?

Answer:

This code will only work for n at least 1, but the specification doesn’t say so. It
should have a requires clause: Requires: n>=1

(b) [6 pts] Show each of the evaluation steps involved in the evaluation of fact(3)
according to the substitution model.

Answer:

fact(3)

--> f(1,3)

--> if 3=1 then 1 else f(1*3,3-1)

--> if false then 1 else f(1*3,3-1)

--> f(1*3,3-1)

--> f(3,3-1)

--> f(3,2)

--> if 2=1 then 3 else f(3*2,2-1)

--> if false then 3 else f(3*2,2-1)

--> f(3*2,2-1)

--> f(6,2-1)

--> f(6,1)

--> if 1=1 then 6 else f(6*1,1-1)

--> if true then 6 else f(6*1,1-1)

--> 6

(c) [6 pts] The function f has no specification above. Complete the following specifi-
cation in such a way that f satisfies it and it is strong enough to argue that fact
computes the factorial of its argument.

(* f(m,n) is m*n!.

* Requires: n>0

*)

(d) [3 pts] Using the specification you just wrote in 4(c), argue that fact satisfies its
own specification. In your argument, rely only on the specification of f and do
not use any other information about the implementation of f.

Answer:

fact(n) evaluates to f(1,n), which according to the specification for f is 1 ·
n! = n!. Therefore fact is correctly implemented assuming f implements its
specification.

5

(e) [12 pts] Prove by induction that f satisfies the specification of 4(c). Make sure
to perform all of the steps involved in a proof by induction.

Answer:

i. Proposition: f(m,n) computes m ·n! for n ≥ 1. Proved by induction on n.

ii. Base case: Consider arbitrary m. Then, f(m,1) −→if 1=1 then m
else f(m*1,1-1) −→if true then m else f(m*1,1-1) −→m. This
is correct because m = m · 1!

iii. Induction hypothesis: f(m,n) computes m · n!

iv. Induction step: Want to show f(m,n + 1) computes m · (n + 1)!. Pro-
ceed by evaluation. We will underline terms such as n + 1 to indicate that
they represent simple SML integers which depend on m or n, and are not
arithmetic expressions to be evaluated in the program..
f(m,n + 1) −→if n + 1=1 then m else f(m*n + 1,n + 1-1) −→if

false then m else f(m*n + 1,n + 1-1) −→f(m*n + 1,n + 1-1)
−→f(m · (n + 1),n + 1-1) −→f(m · (n + 1),n)
By the induction hypothesis, this evaluates to m · (n + 1) ·n!, which is equal
to m · (n + 1)! as desired.

v. Conclusion: By induction, f(m,n) computes m · n! for n ≥ 1.

5. Complexity [10 pts] (parts a–e)

For each of the following pairs of functions f(n) and g(n), circle the one that is of the
asymptotically largest order of growth, or write SAME if they are of the same order
of growth.

(a) [2 pts]
f(n) = n, g(n) = n lg n

Answer:

n lg n

(b) [2 pts]
f(n) = 1000n2 + 10000, g(n) = n3 − 5n2

Answer:

n3 − 5n2

(c) [2 pts]
f(n) = n2.001, g(n) = n2 lg n

Answer:

n2.001. Recall nε where ε > 0 is asymptotically larger than lg n.

6

(d) [2 pts]
f(n) = n2 + n lg n, g(n) = 2n2 + n

Answer:

SAME. Both are Θ(n2)

(e) [2 pts]
f(n) = lg2 n, g(n) = lg n

Answer:

lg2 n is a factor of lg n larger.

7

