
CS312 Final Exam
Cornell University, Spring 2005 May 17, 2005

Solutions

1. True/False [20 pts] (parts a–j)

Each correct answer is 2 pts; each wrong answer is -2 pts; and each blank answer is 0 pts.

(a) Software testing proves the presence of bugs, but cannot prove their absence.

True

(b) The type that SML infers for the expression fn (x,y) => fn x => (y,x) is:
’a * ’b -> ’c -> ’b * ’c.

True

(c) The function f(n) = lg(n lg n) is O(lg n).

True

(d) At each collection, a copying collector must traverse all of the data in the program
(including data unreachable from the roots).

False

(e) The implementation of Dijkstra’s shortest-paths algorithm requires a stack data struc-
ture.

False

(f) The function foldl is tail-recursive.

True

(g) It is possible that a hash table with n elements and a load factor of 2 has a bucket that
contains all of the n elements.

True

(h) When a program exhibits temporal locality, it will access the same memory location in
the near future.

True

(i) Any lookup operation in a splay tree with n nodes is O(lg n).

False

(j) Data races can occur during the execution of message-passing concurrent programs.

False

1



2. Sets [20 pts] (parts a–c)

The following is a standard set interface:

signature SET = sig

(* A ’a set is a set of items of type ’a. *)

type ’a set

(* empty is the empty set *)

val empty : ’a set

(* add(s,e) is s union {e} *)

val add: ’a set * ’a -> ’a set

(* fold over the elements of the set *)

val fold: (’a*’b->’b) -> ’b -> ’a set -> ’b

end

(a) [5 pts] Extend the interface with a function remove that removes an item from a set.
Provide a signature and a specification for remove. Define an appropriate exception if
necessary.

Answer:

exception NotFound

(* remove (s,e) is the set s - {e} *)

* Raises: NotFound if e does not belong to s *)

val remove: ’a set * ’a -> ’a set

(b) [7 pts] Write an implementation for function remove using the other functions in
the signature. Assume that an equality funtion for items equal’:’a*’a->bool is also
available (’a being the type of the items in the set). Your function remove should not
visit any of the items more than once.

Answer:

fun remove(s, e) =

let val (r,f) = fold (fn (x,(s’,f)) => if equal(x,e) then (s’,true)

else (add(s’,x),f))

(empty,false) s

in

if f then r else raise NotFound

end

(c) [8 pts] Consider now a function cartprod that takes two sets of items and yields a
set of pairs representing the Cartesian product:

(* cartprod(s1,s2) is the cartesian product of s1 and s2 *)

val cartprod: ’a set * ’a set -> (’a * ’a) set

Remember that the Cartesian product A × B of two sets A and B is the set of all pairs
(a, b) where a ∈ A and b ∈ B. That is, A × B = {(a, b) | a ∈ A, b ∈ B}.

For simplicity, assume that sets are implemented using lists (type ’a set = ’a list).
Below are some examples of using cartprod:

2



cartprod ([1,2], [3,4]) = [(1,3), (1,4), (2,3), (2,4)]

cartprod (["a"], ["b", "c"]) = [("a","b"), ("a","c")]

cartprod ([1,2], []) = []

Write the function cartprod, assuming a list implementation of sets. You may not use
the list concatenation operator “@” in your solution.

Note: It is possible to write cartprod such that is works for any implementation of sets,
not only lists. Feel free to write such a function.

Answer: The implementation of cartprod for lists, without folding:

fun cartprod(s1, s2) =

case (s1,s2) of

([],_) => []

| (h1::t1, _) =>

let fun prod(s) = case s of

[] => cartprod(t1,s2)

| h2::t2 => (h1,h2)::prod(t2)

in

prod(s2)

end

The general implementation of cartprod using fold is simpler:

fun cartprod(s1, s2) =

fold (fn (x,s’) =>

(fold (fn (y,s’’) => add (s’’,(x,y))) s’ s2))

empty s1

3. Trees [20 pts] (parts a–c)

The following is the standard datatype for binary search trees containing integer values:

datatype tree = Leaf | Node of tree * int * tree

(a) [5 pts] Consider two functions min and max that compute the smallest and the largest
numbers in a tree:

(* min(t) is the smallest element of t,

* or the largest integer if t is a leaf. *)

val min : tree -> int

(* max(t) is the largest element of t,

* or the smallest integer if t is a leaf. *)

val max : tree -> int

Using these functions, write a function repOK : tree -> bool that returns true if and
only if the tree satisfies the binary search tree invariant. (For an informal description of
the invariant you’ll receive partial credit).

Answer:

fun repOK(t) =

case t of Leaf => true

| Node(l, v, r) => max(l) <= v andalso v <= min(r)

andalso repOK(l) andalso repOK(r)

3



(b) [5 pts] Several kinds of binary trees (including AVL, red-black, and splay trees) use
rotations for rebalancing. The following is the basic right rotation:

fun rotate (t:tree) :tree =

case t of

Node(Node(A,x,B), y, C) => Node(A, x, Node(B,y,C))

| _ => t

Show that the above function rotate maintains the binary search tree invariant.

Answer: Assume that the invariant holds for t at the beginning of rotate.

On the first arm pf the case construct, t matches the pattern Node(Node(A,x,B),y,C).

Therefore, max(A) ≤ x ≤ min(B) ≤ max(B) ≤ y ≤ min(C). Also, all of the nodes in A, B,

and C satisfy the binary search tree invariant. This shows that the tree Node(A,x,Node(B,y,C))

is also a binary search tree.

On the second arm of the case, the invariant trivially holds because the returned tree is

identical.

(c) [10 pts] Consider now an imperative implementation of binary search trees:

datatype itree = Leaf | Node of (itree ref) * int * (itree ref)

(* irotate(t) performs a right rotation at the root of t

* Effects: destructively updates t

* Returns: the new root after the rotation. *)

val irotate: itree -> itree

Write an implementation for irotate.

Answer:

val irotate(ty:itree): itree =

case ty of

Node(L as ref(tx as Node(A,x,B)), y, C) =>

(L := !B; B := ty; tx)

| _ => ty

4. Correctness and Complexity [20 pts] (parts a–g)

Consider the following program:

fun f (x, y) =

if y = 0 then 1 else

let

val p = f (x, y div 2)

val sp = p * p

in

if y mod 2 = 0 then sp else x * sp

end

(a) [3 pts] What does f(x,y) compute?

Answer: f(x,y) is xy.

4



The following questions ask you to prove the correctness of function f, with respect to your
answer above.

(b) [2 pts] Write the property P (n) that you need to prove and specify the initial value
n0 of n.

Answer: P (n) = f(x, n) is xn, for all x. The initial value of n is n0 = 0.

(c) [2 pts] State whether you’ll use strong or weak induction.

Answer: Strong induction.

(d) [2 pts] Prove the base case.

Answer: For n = 0 and for any x, f(x, n) = f(x, 0) evaluates to 1. Since x0 = 1, we

get that f(x, 0) = x0 for all x.

(e) [4 pts] State the induction hypothesis and prove the induction step.

Answer: Induction Hypothesis: assume that P (m) holds for any 0 ≤ m < n. We want

to prove that P (n) holds.

Since n > 0, P (n) evaluates the false arm of the first if statement. On that branch, the

program computes p = f(x, bn/2c) and sp = p2. By IH, because bn/2c < n, we get that

p = xbn/2c. Hence, sp = x2bn/2c. Note that 2bn/2c is not necessarily equal to n, because

bn/2c is the integer division.

We have two cases. If n mod 2 = 0, the program executes the first branch of the inner

if expression. In this case, n = 2k for some k, so p = xk and sp = p2 = x2k = xn. The

returned value is sp, so f(x, n) = xn.

If n mod 2 = 1, the program executes the second branch. In this case, n = 2k + 1
for some k, so p = xk and sp = p2 = x2k = xn−1. The returned value is x ∗ sp, so

f(x, n) = x ∗ sp = xn.

In either case, f(x, n) = xn, which completes the proof.

Next, analyze the run-time complexity of f.

(f) [4 pts] Write the recurrence relations for the running time of f(2,n). Use constants
c1, c2, etc. for operations that take constant time.

Answer: Let T (n) be the running time of f(2, n). Then:

T (0) = c1

T (n) = T (bn/2c) +

{

c2 if n is even

c2 + c3 if n is odd

(g) [3 pts] What is the run-time complexity of f(2,n)? You don’t have to prove your
result.

Answer: T (n) is O(lg n).

5. Environment Model [20 pts] (parts a–d)

The program below is written in a ML-like language that doesn’t allow recursive functions,
but has references and higher-order functions:

let val rf = ref (fn x => x)

val f = fn y => let val (n,p,q) = y in

5



if n = 0 then y else

(!rf)(n - 1, q, p + q)

end

val () = rf := f

in

f(5,1,1)

(* GC *)

end

(a) [3 pts] What are the types of f and rf?

Answer:

f : int * int * int -> int * int * int

rf : (int * int * int -> int * int * int) ref

(b) [3 pts] What is the result of the evaluation?

Answer: (0,8,13).

(c) [10 pts] Draw the environment diagram that arises during the evaluation of the second
call to f (i.e., when the program starts evaluating the function body for that call).

Answer:

TOP

rf = fn x => x

f = fn y => ...

y = (5,1,1)

n = 5

p = 1

q = 1

y = (4,1,2)

(d) [4 pts] What heap cells (not environment entries!) can a garbage collector reclaim at
the program point labeled GC in the code?

Answer: The collector can reclaim the closure fn x => x, as well as five tuples created

during the execution: (5,1,1), (4,1,2), (3,2,3), (2,3,5), and (1,5,8).

The cells that cannot be collected are: the closure fn y => ..., the ref cell, and the

returned tuple (1,8,13). The first two cannot be reclaimed yet because they are still

reachable from variables in scope.

6


