
Preliminary Examination II
Computer Science 312, Cornell University 20 April 2004

1. Environment Model [27 pts] (parts a–d)

Consider the following code:

let val y = (ref "hello", "goodbye")
val z = ((#1 y) := (#2 y); 0)
fun f(x: int) = #2 y
fun g(y: int) = ref f

in
g(5)

end

(a) [2 pts] What is the type of f?

(b) [2 pts] What is the type of g?

(c) [18 pts] Draw the result produced by evaluating this expression in the environment model.

(d) [5 pts] What garbage (other than environment entries) is generated by evaluating this program?

2. Data abstraction [33 pts] (parts a–d)

Suppose we want to implement a game of N-by-N tic-tac-toe using a mutable data abstraction for the board.
The following is a start at an interface:

(* A board is a mutable N-by-N tic-tac-toe board. *)

type board
datatype contents = X | O | Empty
(* A cell is a cell coordinate, from (1,1) up to (N,N) *)

type cell = int * int
(* create(n) creates an n-by-n board with all cells empty. *)

val create: int -> board
(* The number of cells in one row or column of the board. *)

val boardSize: board -> int
(* The number of non-empty cells. *)

val moves: board -> int
(* The contents of a board cell. *)

val getCell: board*cell -> contents
(* Set the contents of a board cell.

Requires: that cell is currently empty. *)

val setCell: board*cell*contents -> unit
(* Return whose move it is (always X or O) *)

val whoseMove: board -> contents

(a) [5 pts] Classify each of these operations as a creator, observer, or mutator.

(b) [7 pts] Supply any missing preconditions.

Consider the following representation:

type board = { size: int,
X’s: cell list ref,
O’s: cell list ref }

Using this rep, here is how we might implement the function create so that it takes only O(1) time in the board
size:

1

fun create(n: int) = { size = n, X’s = ref nil, O’s = ref nil }

However, some of the other operations are not so easy to implement.

(c) [15 pts] Give an appropriate representation invariant for this representation. Think about what will be
needed to implement all of the functions in the interface above.

(d) [6 pts] Suggest a different representation that would permit all of the operations except create to be
implemented in time O(1) in the board size.

type board =

3. Recurrences [20 pts] (parts a–b)

The conventional algorithm for multiplying two square matrices of size n takes O(n3) time. However, there is
an asymptotically more efficient algorithm in which the matrix is divided into smaller matrices of size n

2 by n
2

and 7 matrix multiplications are performed on them. Thus, we arrive at the following recurrence:

T (1) = 1
T (n) = 7T (n/2)

To simplify analysis, let us consider values of n that are powers of two.

(a) [6 pts] Is the solution to this recurrence O(n3)? Justify your answer briefly.

(b) [14 pts] Find the value of c such that the solution to the recurrence is Θ(nc).

4. Type checking [20 pts] (parts a–c)

(a) [7 pts] Define a function f with type (’a*’b) ref -> (’a ref)*(’b ref). Remember that this
function must be polymorphic.

fun f(x: (’a*’b) ref) =

(b) [3 pts] Give an example of two type expressions that contain unsolved type variables but that cannot be
unified.

(c) [10 pts] Consider the following SML function:

fun f(x,y,z,w) =
if z(x) then (x, (y,z)) else (z(x), w)

If we let the SML type inference algorithm reconstruct types for this definition, what will be the types
inferred for the identifiers x, y, z and w?

2

