Preliminary Examination |l
Computer Science 312, Cornell University 20 April 2004

1. Environment Model [27 pts] (parts a—d)

Consider the following code:

let val y = (ref "hello", "goodbye")
val z = ((#1 y) := (#2 y); 0)
fun f(x: int) = #2 y
fun g(y: int) = ref f

in
g(5)
end

(a) [2pts] Whatis the type of £?
(b) [2pts] What is the type of g?
(c) [18 pts] Draw the result produced by evaluating this expression in the environment model.

(d) [5pts] What garbage (other than environment entries) is generated by evaluating this program?

2. Data abstraction [33 pts] (parts a—d)

Suppose we want to implement a game of N-by-N tic-tac-toe using a mutable data abstraction for the board.
The following is a start at an interface:

(* A board is a mutable N-by-N tic-tac-toe board. *)
type board
datatype contents = X | O | Empty
(* A cell is a cell coordinate, from (1,1) up to (N,N) *)
type cell = int * int
(* create(n) creates an n-by-n board with all cells empty. *)
val create: int -> board
(* The number of cells in one rTow or column of the board. *)
val boardSize: board -> int
(* The number of non-empty cells. *)
val moves: board -> int
(* The contents of a board cell. *)
val getCell: board*cell -> contents
(* Set the contents of a board cell.
Requires: that cell is currently empty. *)
val setCell: board*cell*contents -> unit
(* Return whose move it is (always X or 0) *)
val whoseMove: board -> contents

(a) [5pts] Classify each of these operations as a creator, observer, or mutator.

(b) [7pts] Supply any missing preconditions.

Consider the following representation:

type board = { size: int,
X’s: cell list ref,
0’s: cell list ref }

Using this rep, here is how we might implement the function create so that it takes only O(1) time in the board
size:

fun create(n: int) = { size = n, X’s = ref nil, 0’s = ref nil }

However, some of the other operations are not so easy to implement.

(c) [15 pts] Give an appropriate representation invariant for this representation. Think about what will be
needed to implement all of the functions in the interface above.

(d) [6 pts] Suggest a different representation that would permit all of the operations except create to be
implemented in time O(1) in the board size.

type board =

3. Recurrences [20 pts] (parts a—b)

The conventional algorithm for multiplying two square matrices of size n takes O(n?) time. However, there is
an asymptotically more efficient algorithm in which the matrix is divided into smaller matrices of size 5 by 4
and 7 matrix multiplications are performed on them. Thus, we arrive at the following recurrence:

T(1) = 1
T(n) = T7T(n/2)

To simplify analysis, let us consider values of n that are powers of two.

(a) [6pts] s the solution to this recurrence O(n?)? Justify your answer briefly.

(b) [14 pts] Find the value of ¢ such that the solution to the recurrence is ©(n°).
4. Type checking [20 pts] (parts a—)

(a) [7 pts] Define a function £ with type (’a*’b) ref -> (’a ref)*(’b ref). Remember that this
function must be polymorphic.

fun f(x: (Ca*x’b) ref) =

(b) [3pts] Give an example of two type expressions that contain unsolved type variables but that cannot be
unified.
(c) [10pts] Consider the following SML function:

fun f(x,y,z,w) =
if z(x) then (x, (y,2)) else (z(x), w)

If we let the SML type inference algorithm reconstruct types for this definition, what will be the types
inferred for the identifiers x, y, z and w?

