
Preliminary Examination II
Computer Science 312, Cornell University 15 April 2003

Before starting the exam, write your name on this page and your netid on both this page and
the next page.

There are 5 problems on this exam. It is 11 pages long; make sure you have the whole exam.
You will have 90 minutes in which to work on the problems. You will likely find some problems
easier than others; read all problems before beginning to work, and use your time wisely. The
prelim is worth 100 points total. The point breakdown for the parts of each problem is printed with
the problem. Some of the problems have several parts, so make sure you do all of them!

This is an closed-book examination; youmay notuse outside materials, calculators, computers,
etc.

Do all written work on the exam itself. If you are running low on space, write on the back of
the exam sheets and be sure to write (OVER) on the front side. It is to your advantage to show your
work — we will award partial credit for incorrect solutions that are headed in the right direction.
If you feel rushed, try to write a brief statement that captures key ideas relevant to the solution of
the problem.

If you finish in the last ten minutes of the exam, please remain in your seat until the end of the
exam as a courtesy to your fellow students.

Name and NetID

1



NetID 2

Problem Points Score
1 10
2 20
3 25
4 20
5 25

Total 100



NetID 3

1. True/False [10 pts]

(parts a–e;4 points off for each wrong answer, 2 points off for each blank answer, minimum
problem score 0.)

a. Imperative data abstractions have mutators.

b. The red-black tree invariant ensures that every path from the root to the leaf has the
same height.

c. The worst-case performance of hash-table lookup isO(n) wheren is the number of
elements, even if the number of buckets isn.

d. The update operation (:=) is O(1) in a language implementation that manages memory
through reference counting.

e. Breadth-first search of a graph requires time proportional ton lg n wheren is the num-
ber of nodes and edges in the graph.



NetID 4

2. Zardoz Refs [20 pts]

For each of the following expressions, give avaluethat causes the expression to evaluate to

42 if the box is replaced by that value.

(a) [10 pts]

let

val zardoz: ’a * ’a ref * ’a ref * ’a ref ref -> unit =

val x: int ref ref = ref(ref(1))

val y: int ref ref = ref(ref(1))

val z: int ref = ref(8)

in

zardoz(6,z,!x,y);

(!(!x)) * (!(!y) - 1)

end

Your answer:

(b) [10 pts]

let val zardoz: unit->unit->int =

val f = zardoz()

in

f() + f() + 1

end

Your answer:



NetID 5

3. Correctness [25 pts]

Consider the following data abstraction for Booleans and its implementation:

signature BOOL = sig

(* A "boolean" is a Boolean with the usual operations. *)

type boolean

val true: boolean

val false: boolean

val and_: boolean * boolean -> boolean

val or: boolean * boolean -> boolean

end

structure Boolean :> BOOL = struct

type boolean = int

val true = 1

val false = 0

fun and_(x,y) = x*y handle overflow => true

fun or(x,y) = x+y handle overflow => true

end

(a) [3 pts] What is the abstraction function for this implementation?

(b) [3 pts] What is the representation invariant maintained by this implementation?

(c) [4 pts] Now let’s prove that the functionor is implemented correctly. Start by stating
a proposition that, if true, meansor is implemented correctly. This proposition should
be expressed using the abstraction functionAF and the representation invariantRI.



NetID 6

(d) [15 pts] Prove the proposition you stated in part 3(c).Hint: consider possible cases
onx andy.



NetID 7

4. Complexity [20 pts]

Let T (n) be the time to perform a merge sort ofn elements. The recurrence is:

T (1) = 1

T (n) = 2T (n/2) + n + 1

Let’s prove thatT (n) = O(n) for all n by induction onn.

Base case:T (1) = 1 = O(1)
Assume that for anym, 1 ≤ m < n, T (m) = O(m). Then

T (n) = 2T (n/2) + n + 1

= 2O(n/2) + n + 1 by IH

= O(2(n/2) + n + 1)

= O(2n + 1)

= O(n).

“QED”.

(a) [1 pt] What is the correct asymptotic complexity of merge sort?

(b) [10 pts] What’s wrong with this proof? Explain briefly how and where the reasoning
is incorrect.



NetID 8

Consider the following recurrence:

T (1) = 1

T (n) = 2T (n/2) + n2

Use the substitution method to determine whether the following statements are true or false.
Show your work.

(c) [3 pts] T (n) is O(n)

(d) [3 pts] T (n) is O(n lg n)

(e) [3 pts] T (n) is O(n2)



NetID 9

5. Type Checking [25 pts]

The following two functions transform a two-argument function between its curried and
uncurried forms:

val curry: (’a*’b->’c) -> (’a->’b->’c) =

fn (f: ’a*’b->’c) => fn(x:’a) => fn(y:’b) => f(x,y)

val uncurry: (’a->’b->’c) -> (’a*’b->’c) =

fn (f: ’a->’b->’c) => fn(x:’a, y’:b) => f x y

Consider the following code that usescurry:

let fun plus(x:int,y:int):int = x+y

val x:string = "hi"

val y: int->int->int = curry plus

in

y 2

end

(a) [10 pts] Show the contents of the environment (including bothx’s) and the heap at the
end evaluating thelet block (but whilex andy are still in scope.) Part of the diagram
is drawn below; complete it. (Note thatcurry is assumed to be already present in
the environment as shown.) You may use the back side as scratch paper or redraw the
whole figure there if you need more room.

TOP

fn(x,y) => x+yplus=

curry = fn(f)=>fn(x)=>fn(y)=>f(x,y)

fn(y)=>f(x,y)

env

����� ult



NetID 10

A type can be interpreted as a logical proposition, where the product type operator* cor-
responds to Boolean “and” (∧), the datatype separator| corresponds to Boolean “or” (∨),
and the function type operator-> corresponds to Boolean implication (⇒). For example,
the type’a->(’b->’c) corresponds to a propositionA ⇒ (B ⇒ C). A type like int

corresponds to the proposition “some integer exists”.

Remarkably, a proposition holds1 only when we can find a term whose type corresponds to
that of the proposition. For example, the propositionA ⇒ A holds for all propositionsA;
the termfn(x:’a)=>x is a proof of this claim! Conversely, if a proposition is false, then we
can find no term that has the corresponding type (if we aren’t allowed to use certain SML
features: for example, refs or any recursion leading to nontermination). Thus, there is no
term of the type’a->’b because the propositionA ⇒ B is not true for allA andB.

In logic, we can show that two propositionsX andY are equivalent (writtenX ≡ Y ) by
showing bothX ⇒ Y andY ⇒ X. Because propositions are types, the equivalence of
two propositions has a computational significance: it means that there must exist a pair of
functions that map back and forth between the types that correspond to the two propositions.
For example, thecurry anduncurry functions prove the logical equivalenceA ⇒ (B ⇒
C) ≡ (A ∧B) ⇒ C.

(b) [8 pts] In logic,A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C), because “and” distributes over
“or”. To represent “or”, we use this datatype:

datatype (’x, ’y) sum = Left of ’x | Right of ’y

Prove this logical equivalence by implementing these declarations with functions that
always terminate:

val forward: ’a*(’b,’c) sum -> (’a*’b, ’a*’c) sum

val backward: (’a*’b, ’a*’c) sum -> ’a*(’b,’c) sum

Write down all type declarations explicitly.

1in “constructive logic”, which isn’t as powerful as the classical logic covered in CS 280.



NetID 11

(c) [7 pts] Similarly, showA ⇒ (B ∧ C) ≡ (A ⇒ B) ∧ (A ⇒ C) by defining two ter-
minating functions that map between the types’a->’b*’c and(’a->’b)*(’a->’c).


