
Abstraction Functions and
Representation Invariants

Greg Morrisett
Spring 2018

Review

Previously in 3110:
• Abstraction and specification
• Specifying functions

Today:
• Specifying data abstractions
• Representation types
• Abstraction functions
• Representation invariants

Where to write specifications

• Put specs where clients will find them
– In signature
– Usually in .mli file

• Not where implementer will write code
– In structure
– Usually in .ml file

• And don’t duplicate them between .ml and .mli!

Back to: Audience of specification

• Clients
– Spec informs what they must guarantee (preconditions)
– Spec informs what they can assume (postconditions)

• Implementers
– Spec informs what they can assume (preconditions)

– Spec informs what they must guarantee (postconditions)

But the spec isn’t enough for implementers...

REPRESENTATION TYPES

Example: sets

module type Set = sig
type 'a t
val empty : 'a t
val mem : 'a -> 'a t-> bool
val add : 'a -> 'a t-> 'a t
val size : 'a t-> int

end

Sets without duplicates

module ListSetNoDup : Set = struct
(* the list may never have duplicates *)
type 'a t = 'a list
let empty = []
let mem = List.mem
let add x l =
if mem x l then l else x :: l

let size = List.length
end

Sets with duplicates

module ListSetDup : Set = struct
(* the list may have duplicates *)
type 'a t = 'a list
let empty = []
let mem = List.mem
let add x l = x :: l
let rec size = function
| [] -> 0
| h::t -> size t +

(if mem h t then 0 else 1)
end

Compare set implementations

• Both have the same representation type, 'a list
• But they interpret values of that type differently

– [1;1;2] is {1,2} in ListSetDup
– [1;1;2] is not meaningful in ListSetNoDup
– In both, [1;2] and [2;1] are {1,2}

• Interpretation differs because they make different assumptions
about what values of that type can be:
– passed into operations
– returned from operations

• e.g.,
– [1;1;2] can be passed into and returned from ListSetDup
– [1;1;2] should not be passed into or returned from
ListSetNoDup

Question

Consider this implementation of set union with
representation type 'a list:
let union l1 l2 = l1 @ l2

Under which invariant on representation type will that
implementation be correct?

A. There may be duplicates in lists
B. There may not be duplicates in lists
C. Both A and B
D. Neither A nor B

Question

Consider this implementation of set union with
representation type 'a list:
let union l1 l2 = l1 @ l2

Under which invariant on representation type will that
implementation be correct?

A. There may be duplicates in lists
B. There may not be duplicates in lists
C. Both A and B
D. Neither A nor B

Representation type questions

• Q: How to interpret the representation type as
the data abstraction?

• A: Abstraction function

• Q: How to determine which values of
representation type are meaningful?

• A: Representation invariant

Abstraction function

• Abstraction function (AF) captures designer’s intent in
choosing a particular representation of a data
abstraction

• Not actually an OCaml function, but a mathematical
function

• Maps concrete values to abstract values

{1,2} {7} abstract: setclient’s view

[1;2] [7][2;1] concrete: lists (no dups)implementer’s view

abstraction barrier

AF properties

• Many-to-one: many values of concrete type can
map to same value of abstract type
– [1;2] maps to {1,2}, as does [2;1]

• Partial: some values of concrete type do not map
to any value of abstract type
– [1;1;2] (in no dups) does not map to any set

Documenting AFs
module ListSetNoDup : Set = struct
(* AF: the list [a1; ...; an] represents
* the set {a1,...,an}. [] represents
* the empty set. *)
type 'a t = 'a list
...

end
module ListSetDup : Set = struct
(* AF: the list [a1; ...; an] represents
* the smallest set containing the
* elements a1, ..., an. [] represents
* the empty set. *)
type 'a t = 'a list
...

end

Documenting AFs

• You might write:
– (* Abstraction Function: comment *)
– (* AF: comment *)

• You write it FIRST
– It’s the number one decision you have to make while

implementing a data abstraction
– It gives meaning to representation
– It dictates what values are necessary in a module, or what

fields are necessary in an object, or what

Implementing AFs

• Mostly you don’t
– Would need to have an OCaml type for abstract

values
– If you had that type, you’d already be done...

• But sometimes you do something similar:
– string_of_X or to_string or format
– quite useful for debugging

Duplicates?
module ListSetNoDup : Set = struct
(* AF: the list [a1; ...; an] represents
* the set {a1,...,an}. [] represents
* the empty set. *)
type 'a t = 'a list
...

end
module ListSetDup : Set = struct
(* AF: the list [a1; ...; an] represents
* the smallest set containing the
* elements a1, ..., an. [] represents
* the empty set. *)
type 'a t = 'a list
...

end So far, nothing other than
name of module specifies
whether duplicates are
allowed…

Representation invariant

• Representation invariant characterizes which concrete values
are valid and which are invalid
– “Rep invariant” or "RI" for short
– Valid concrete values mapped by AF to abstract values
– Invalid concrete value not mapped by AF to any abstract values
– Closely related to class invariants that you saw in 2110

• RI is a fact whose truth is invariant except for limited blocks of
code
– (much like loop invariants from 2110)
– RI is implicitly part of pre- and post-conditions
– operations may violate it temporarily (e.g., construct a list with

duplicates then throw out the duplicates)

Representation invariant

concrete
output

concrete
operation

concrete
input

RI holds RI holds

RI maybe violated

Documenting RI
module ListSetNoDup : Set = struct
(* AF: the list [a1; ...; an] represents
* the set {a1,...,an}. [] represents
* the empty set. *)
(* RI: the list contains no duplicates *)
type 'a t = 'a list

end
module ListSetDup : Set = struct
(* AF: the list [a1; ...; an] represents
* the smallest set containing the
* elements a1, ..., an. [] represents
* the empty set.
* RI: none *)
type 'a t = 'a list

end

Implementing the RI

• Implement it early, before any operations are implemented

• Common idiom: if RI fails then raise exception, otherwise return
concrete value

let rep_ok (x:'a list) : 'a list =
if has_dups x then failwith "RI"
else x

• When debugging, check rep_ok on every input to an operation
and on every output...

Checking the RI
module ListSetNoDup : Set = struct

(* AF: ... *)
(* RI: ... *)
type 'a t = 'a list
let rep_ok = ...
let empty = rep_ok []
let mem x l = List.mem x (rep_ok l)
let add x l =

let l' = rep_ok l in
if mem x l' then l'
else rep_ok(x :: l')

let size l = List.length (rep_ok l)
end

Funny story...this saved a CS 3110 tournament one year

Checking the RI

• Can be expensive!
• For production code, options include...
– only check “cheap parts” of RI
– comment out "real" implementation, change
rep_ok to identity function, let compiler optimize
call away

– use language features for condition compilation (in
OCaml, CamlP4 or PPX)

CORRECTNESS OF OPERATIONS

AF and operations

[1;2] concrete operation

append [2;3]

[1;2;2;3]

AF

{1,2}

AF

{1,2;3}abstract operation

union {2,3}

Example: ListSetDup

AF and operations

AF AF

implemented operation

abstract operation

commutative diagram: both paths lead to the same place

Correctness of operations

Implementation is correct if AF commutes:

opabs(AF(c)) = AF(opconc(c))

• c is a concrete value for which RI holds
• opconc is the concrete implementation of the

operation, e.g. list append
• opabs is the abstract operation (not implemented),

e.g. set union

Recap: Specifying rep. types

• Q: How to interpret the representation type as
the data abstraction?

• A: Abstraction function

• Q: How to determine which values of
representation type are meaningful?

• A: Representation invariant

Upcoming events

• [March 9th] A2 due

