110
CS3

Abstraction Functions and
Representation Invariants

Greg Morrisett
Spring 2018

Review

Previously in 3110:
* Abstraction and specification
* Specifying functions

Today:

* Specifying data abstractions
* Representation types

* Abstraction functions

* Representation invariants

Where to write specifications

* Put specs where clients will find them
— In signature

— Usually in .mli file

* Not where implementer will write code
— In structure

— Usually in .ml file

* And between .ml| and .mli!

Back to: Audience of specification

* Clients
— Spec informs what they must guarantee (preconditions)

— Spec informs what they can assume (postconditions)

* Implementers
— Spec informs what they can assume (preconditions)

— Spec informs what they must guarantee (postconditions)

But the spec isn’t enough for implementers...

REPRESENTATION TYPES

Example: sets

module type Set = sig

type 'a t

val empty : 'a t

val mem : 'a -> 'a t-> bool
val add : 'a -> 'a t-> 'a t
val size : 'a t-> int

end

Sets without duplicates

module ListSetNoDup : Set = struct
(* the list may never have duplicates ¥*)
type 'a t = 'a list
let empty = []
let mem = List.mem

end

Sets with duplicates

module ListSetDup : Set = struct
(* the list may have duplicates ¥*)
type 'a t = 'a list
let empty = []
let mem = List.mem

end

Compare set implementations

* Both have the same representation type, 'a list

* But they interpret values of that type differently
— [1;1;2] is{1,2}inListSetDup
— [1;1;2] isnotmeaningfulin ListSetNoDup
— Inboth, [1;2] and [2;1] are{1,2}
* Interpretation differs because they make
about what values of that type can be:
— passed into operations
— returned from operations
* eg,
— [1;1;2] canbe passedinto and returned from ListSetDup

— [1;1;2] should not be passed into or returned from
ListSetNoDup

Question

Consider this implementation of set union with
representation type 'a list:

let union 11 12 = 11 @ 12

Under which invariant on representation type will that
implementation be correct?

There may be duplicates in lists
There may not be duplicates in lists
Both Aand B

Neither A nor B

OnNnw2

Question

Consider this implementation of set union with
representation type 'a list:

let union 11 12 = 11 @ 12

Under which invariant on representation type will that
implementation be correct?

B. There may not be duplicates in lists
C. BothAandB
D. Neither A nor B

Representation type questions

* Q: How to interpret the representation type as
the data abstraction?

 A: Abstraction function

* Q: How to determine which values of
representation type are meaningful?

* A: Representation invariant

Abstraction function

* Abstraction function (AF) captures designer’s intent in
choosing a particular representation of a data
abstraction

* Not actually an OCaml function, but a mathematical
function

* Maps concrete values to abstract values

client’s view abstract: set

abstraction barrier

implementer’s view concrete: lists (no dups)

-

AF properties

* Many-to-one. many values of concrete type can
map to same value of abstract type

—[1;2] mapsto{1,2},asdoes [2;1]
* Partial: some values of concrete type do not map

to any value of abstract type
—[1;1;2] (innodups)doesnot map to any set

Documenting AFs

module

type

end
module

type

end

ListSetNoDup : Set

'a t = 'a list

ListSetDup :

t

Set =

'a list

= struct

struct

Documenting AFs

* You might write:
— (* Abstraction Function: comment #*)

— (* AF: comment *)
* You write it FIRST

— It’s the number one decision you have to make while
implementing a data abstraction

— |t gives meaning to representation

— It dictates what values are necessary in a module, or what
fields are necessary in an object, or what

Implementing AFs

* Mostly you don'’t

— Would need to have an OCaml type for abstract
values

— If you had that type, you'd already be done...
* But sometimes you do something similar:
—string of Xorto stringorformat

— quite useful for debugging

Duplicates?

module ListSetNoDup : Set = struct

type 'a t = 'a list

end
module ListSetDup : Set = struct

type 'a t = 'a list

So far, nothing other than
name of module specifies
whether duplicates are
allowed...

Representation invariant

* Representation invariant characterizes which concrete values
are valid and which are invalid

— “Rep invariant” or "RI" for short

— Valid concrete values mapped by AF to abstract values

— Invalid concrete value not mapped by AF to any abstract values
— Closely related to class invariants that you saw in 2110

* Rlis except for limited blocks of
code

— (much like loop invariants from 2110)
— Rlis implicitly part of pre- and post-conditions

— operations may violate it temporarily (e.g., construct a list with
duplicates then throw out the duplicates)

Representation invariant

concrete concrete
Input output
—_— concrete —_—
operation
RI holds RI holds
-------- >

RI maybe violated

Documenting Rl

module ListSetNoDup : Set = struct
(* AF: the list [al; ...; an] represents
* the set {al,...,an}. [] represents
* the empty set. *)

type 'a t = 'a list

end

module ListSetDup : Set = struct
(* AF: the list [al; ...; an] represents
* the smallest set containing the
* elements al, ..., an. [] represents

o the empty set.
* RI: none *)
type 'a t = 'a list
end

Implementing the RI

, before any operations are implemented

* Common idiom: if Rl fails then raise exception, otherwise return
concrete value

let rep ok (x:'a list) : 'a list =
if has dups x then failwith "RI"
else x

* When debugging, check rep ok on every input to an operation
and on every output...

Checking the Rl

module ListSetNoDup : Set = struct
(* AF: ... *)

(* RI: ... ¥*)
type 'a t = 'a list
let empty = []
let mem x 1 = List.mem x (1)
let add x 1 =
let 1' = 1l in
i1f mem x 1' then 1'
else (x :: 1")
let size 1 = List.length (1)
end

Funny story...this saved a CS 3110 tournament one year

Checking the Rl

* Can be expensive!

* For production code, options include...
— only check “cheap parts” of RI

— comment out "real” implementation, change
rep ok to identity function, let compiler optimize
call away

— use language features for condition compilation (in
OCaml, CamlIP4 or PPX)

CORRECTNESS OF OPERATIONS

AF and operations

11,2}

AF

union {2,3}

abstract operation

Example: ListSetDup

{1,2;3}

AF

AF and operations

abstract operation

4 ®

AF

AF

commutative diagram: both paths lead to the same place

Correctness of operations

Implementation is correct if

0P, (AF(c)) = AF((<))

Is a concrete value for which Rl holds

Is the concrete implementation of the
operation, e.g. list append

* 0op... Is the abstract operation (not implemented),
e.g. set union

Recap: Specifying rep. types

* Q: How to interpret the representation type as
the data abstraction?

 A: Abstraction function

* Q: How to determine which values of
representation type are meaningful?

* A: Representation invariant

Upcoming events

* [March 9] A2 due

