Level Up!
Unix Terminal & Filesystem

Host: Drew Dunne



Table of contents

1. Unix Filesystem Overview
2. Basic Navigational Commands
3. File and Folder Manipulation

4. Flags & Command Clarifaction



Notation

- Commands will be shown on slides using teletype text.

Introducing new commands
some-command [optl] [opt2]

New commands will be introduced in block boxes like this one,
sometimes including common flags or warnings.

- To execute some-command, just type its name into the shell
and press return / enter.
- $ in code-blocks indicate a new command being entered.

$ first-command

output of first-command (where applicable)
$ second-command

output of second-command (where applicable)



Unix Filesystem Overview



The Unix Filesystem

- Unlike Windows, UNIX has a single global "root” directory
(instead of a root directory for each disk or volume).

- The root directory is just /

- All files and directories are case sensitive.
- hello.txt !'= hElLo.TxT

- Directories are separated by / instead of \ in Unix.

- UNIX: /home/sven/lemurs
- Windows: E:\Documents\lemurs

n on

- Hidden files and folders begin with a ”.
- eg .git/ (a hidden directory).

- Example: my home directory.



What's Where: Programs Edition

4

Programs are usually installed in one of the "binaries’
directories:

- /bin: System programs.
- /usr/bin: Most user programs.
- /usr/local/bin: A few other user programs.



Personal Files

- Your personal files are in your home directory (and its
subdirectories), which is usually” located at

Linux Mac
/home/username | /Users/username

- There is also a built-in alias for it; ~

- For example, the Desktop for the user sven is located at

Linux Mac
/home/sven/Desktop | /Users/sven/Desktop
~/Desktop ~/Desktop




Basic Navigational Commands



Where am 1?

- Most shells default to using the current path in their prompt. If
not, you can find out where you are with

rint working directory

pwd

- Prints the "full” path of the current directory.
- Handy on minimalist systems when you get lost.

- Can be used in scripts.

- Note that if you have a path with symbolic links, you need to
use the -P flag.



What's here?

- Knowing where you are is useful, but understanding what else
is there is too...

The list command
1s

- Lists directory contents (including subdirectories).
- Works like the dir command in Windows.

- The -1 flag lists detailed file / directory information (we'll learn
more about flags later).

- Use -ato list hidden files.



Ok lets go!

- Moving around is as easy as

hanging directories

cd [directory name]

- Changes directory to [directory name].

If not given a destination defaults to the user’s home directory.
- You can specify both absolute and relative paths.

- If you do not specify a directory, the ~ (home) directory is
assumed.

- Absolute paths start at / (the global root).
- eg cd /home/sven/Desktop
- Relative paths start at the current directory.
- eg cd Desktop, if you were already at /home/sven



Relative Path Shortcuts

- Shortcuts

~ | current user’s home directory

the current directory (this is actually useful...)

.. | the parent directory of the current directory

- | for cd command, return to previous working directory

- An example: starting in /fusr/local/src
$ cd # now at /home/sven
$ cd - # now at /usr/local/src

$ cd .. # now at /usr/local

"



File and Folder Manipulation




Creating a new File

- The easiest way to create an empty file is using

touch [flags] <file>

- Adjusts the timestamp of the specified file.
- With no flags uses the current date and time.

- If the file does not exist, touch creates it.

- File extensions (. txt, .c, .py, etc) often don’t matter in Unix.
Using touch to create a file results in a blank plain-text file
(so you don't necessarily have to add . txt to it).



Creating a new Directory

- No magic here...
mkdir [flags] <dirl> <dir2> <...> <dirN>
- Can use relative or absolute paths.

- ak.a. you are not restricted to making directories in the current
directory only.

Need to specify at least one directory name.

- Can specify multiple, separated by spaces.

The -p flag is commonly used in scripts:

- Makes all parent directories if they do not exist.
- Convenient because if the directory exists, mkdir will not fail.



File Deletion

- Warning: once you delete a file (from the command line) there
IS no easy way to recover the file.

rm [flags] <filename>

- Removes the file <filename>.
- Remove multiple files with wildcards (more on this later).

- Remove every file in the current directory: rm *
- Remove every . jpg file in the current directory: rm *.jpg

- Prompt before deletion: rm -i <filename>



Deleting Directories

- By default, rm cannot remove directories. Instead we use...

eimove ectory

rmdir [flags] <directory>

- Removes an empty directory.
- Throws an error if the directory is not empty.

- You are encouraged to use this command: failing on non-empty
can and will save you!

- To delete a directory and all its subdirectories, we pass rm the
flag - r (for recursive), e.g. rm -r /home/sven/oldstuff



Copy That!

cp [flags] <file> <destination>

- Copies from one location to another.

- To copy multiple files, use wildcards (such as *).

- To copy a complete directory: cp -r <src> <dest>



Move it!

- Unlike the cp command, the move command automatically
recurses for directories.
- Think of the implication of if it did not...

mv [flags] <source> <destination>
- Moves a file or directory from one place to another.

- Also used for renaming, just move from <oldname> to
<newname>.

- Eg mv badFolderName correctName



1s list directory contents
cd | change directory
pwd | print working directory
rm | remove file

rmdir | remove directory
cp | copy file
mv | move file




Flags & Command Clarifaction




Flags and Options

- Most commands take flags and optional arguments.
- These come in two general forms:
- Switches (no argument required), and
- Argument specifiers (for lack of a better name).
- When specifying flags for a given command, keep in mind:

- Flags modify the behavior of the command / how it executes.
- Some flags take precedence over others, and some flags you
specify can implicitly pass additional flags to the command.

19



Flags and Options: Formats

A flag that is

- One letter is specified with a single dash (-a).
- More than one letter is specified with two dashes (--all).

- The reason is because of how switches can be combined (next
page).

21



Flags and Options: Switches

Switches take no arguments, and can be specified in a couple
of different ways. Switches are usually one letter, and multiple
letter switches usually have a one letter alias (the 1s
command has --all aliased to -a).

- One option:

- ls -a

- ls --all
- Two options:

-1ls -1 -Q
- Two options:

- 1s -1Q

- Usually applied from left to right in terms of operator
precedence, but not always:
- This is up to the developer of the tool.
- rm -fi <file> = prompts

- rm -if <file>= does not prompt =



Flags and Options: Argument Specifiers

- These flags expect an input, and you will encounter two
general kinds.
- The --argument="value" format, where the = and quotes
are needed if value is more than one word.
- Yes: 1s --hide="Desktop" ~/
- Yes: ls --hide=Desktop ~/
- one word, no quotes necessary
- No: ls --hide = "Desktop" ~/
- spaces by the = will be misinterpreted (it used = as the hide
value...)
- The --argument value format, with a space after the
argument. Quote rules same as above.
- ls --hide "Desktop" ~/
- ls --hide Desktop ~/

* Note: The example | gave you was using the same - -hide in both formats, but not all commands will accept both.

Advise - -argument="value" format for higher success rates.

23



Flags and Options: Conventions, Warnings

Generally, you should always specify the flags before the
arguments. In this example, the flagis -1 and ~/Desktop/ is
the argument.

- ls -1 ~/Desktop/ and s ~/Desktop/ -1 both work
- there exist scenarios in which flags after arguments do not get
processed

There is a special sequence - - that signals the end of the
options. | will use another flag to demonstrate:

- ls -1 -a ~/Desktop/ = executes as expected
- ls -1 -- -a ~/Desktop/ = only used -1
* "ls: cannot access -a: No such file or directory”
- -awas treated as an argument, and there is no -a directory
(for me)
24



Flags and Options: Conventions, Warnings (cont)

$
$
$
$
$

cd ~/Desktop # for demonstration purpose

mkdir -a # fails: invalid option -- 'a'
mkdir -- -a # success! (ls to confirm)
rmdir -a # fails: invalid option -- 'a'
rmdir -- -a # success! (ls to confirm)

25



Your new best friend

How do | know what the flags / options for all of these
commands are?

The ual command
man <command_ name>

- Loads the manual (manpage) for the specified command.

- Unlike google, manpages are system-specific.

- Usually very comprehensive. Sometimes too comprehensive.
- Type /<keyword> to search.

- The n key jumps through the search results.

Search example on next page if that was confusing. Intended
for side-by-side follow-along.



Users and Groups

Like most OS’s, Unix allows multiple people to use the same
machine at once. The question: who has access to what?

- Access to files depends on the users’ account.

- All accounts are presided over by the Superuser, or root
account.

- Each user has absolute control over any files they own, which
can only be superseded by root.

- Files can also be owned by a group, allowing more users to
have access.



File Ownership

- You can discern who owns a file many ways, the most
immediate being ls -1

Permissions with s
$ 1s -1 Makefile
-rw-rw-r--. 1 sven users 4.9K Jan 31 04:42 Makefile

sven # the user
users # the group

- The third column is the user, and the fourth column is the
group.



What is this RWX Nonsense?

- R =read, W = write, X = execute.
© FWXIWXIWX
- User permissions.
- Group permissions.
- Other permissions (a.k.a. neither the owner, nor a member of
the group).

- Directory permissions begin with a d instead of a -.



What would the permissions - rwxr---- - mean?

- Itis afile.

- User can read and write to the file, as well as execute it.

- Group members are allowed to read the file, but cannot write to
or execute.

- Other cannot do anything with it.



Changing Permissions

ange e

chmod <mode> <file>

- Changes file / directory permissions to <mode>
- The format of <mode> is a combination of three fields

- Who is affected: a combination of u, g, 0, or a (all).
- Use a + to add permissions, and a - to remove.
- Specify type of permission: any combination of r, w, X.

- Or you can specify mode in octal: user, then group, then
other.

- e.g. 777 means user=7, group=7, other=7 permissions.

The octal version can be confusing, but will save you time.
Excellent resource in [2].



Changing Ownership

Changing the group
chgrp group <file>
- Changes the group ownership of <file>to group.

As the super user, you can change who owns a file:

chown user:group <file>

- Changes the ownership of <file>.

- The group is optional.

- The -R flag is useful for recursively modifying everything in a
directory.



References |

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

28



	Unix Filesystem Overview
	Basic Navigational Commands
	File and Folder Manipulation
	Flags & Command Clarifaction

