

Balanced Trees

Prof. Clarkson Fall 2017

Today's music: Get the Balance Right by Depeche Mode

Prelim

- See Piazza post @422
- Makeup: Thursday night 5:30 pm
- Wed noon: All requests for other makeup/conflict accommodations due to cs3110-mgmt-L@cs.cornell.edu

Review

Previously in 3110:

Advanced data structure: streams (and laziness)

Today:

- Binary search trees
- Balanced search trees
- Running example: sets
- (Balanced trees also useful for maps)

Set interface

Set interface

```
module type Set = sig
  type 'a t
  val empty : 'a t
  val insert : 'a -> 'a t -> 'a t
  val mem : 'a -> 'a t -> bool
end
```

Set implementations

```
module ListSet : Set = struct
end
module BstSet : Set = struct
end
module RbSet: Set = struct
end
```

	Workload 1		
	insert	mem	
ListSet	35s	106s	

	Workload 1		
	insert	mem	
ListSet	35s	106s	
BstSet	130s	149s	

	Workload 1		Workload 2	
	insert	mem	insert	mem
ListSet	35s	106s	35s	106s
BstSet	130s	149s	0.07s	0.07s

MacBook, 1.3 GHz Intel Core m7, 8 GB RAM, OCaml 4.05.0, median of three runs

	Workload 1		Workload 2	
	insert	mem	insert	mem
ListSet	35s	106s	35s	106s
BstSet	130s	149s	0.07s	0.07s
RbSet	0.12s	0.07s	0.15s	0.08s

Sir Tony Hoare

b. 1934

Turing Award Winner 1980

For his fundamental contributions to the definition and design of programming languages.

"We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil."

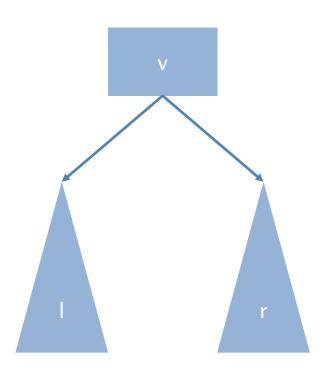
LIST VS. BST

List

```
module ListSet = struct
  (* AF: [x1; ...; xn] represents
       the set \{x1, \ldots, xn\}.
   * RI: no duplicates. *)
  type 'a t = 'a list
  let empty = []
  let mem = List.mem
  let insert x s =
    if mem x s then s else x::s
end
```

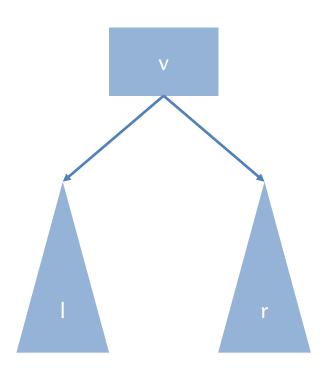
Binary search tree (BST)

- Binary tree: we are groot
- BST invariant:
 - all values in I are less than v
 - all values in r are greater than v



Binary search tree (BST)

- Binary tree: every node has two subtrees
- BST invariant:
 - all values in I are less than v
 - all values in r are greater than v



You might remember from 2110 that finding element in list is O(n). How efficient is finding an element in a BST?

- A. O(1)
- B. $O(\log n)$
- C. O(n)
- D. $O(n \log n)$
- E. $O(n^2)$

You might remember from 2110 that finding element in list is O(n). How efficient is finding an element in a BST?

- A. O(1)
- B. $O(\log n)$
- C. O(n)
- D. $O(n \log n)$
- E. $O(n^2)$

BST

```
module BstSet = struct
  (* AF: [Leaf] represents the empty set.
   * [Node (1, v, r)] represents
   * the set $AF(1) \union {v} \union
   * AF(r)$.
   * RI: for every [Node (1, v, r)],
   * all the values in [1] are strictly less than
   * [v], and all the values in [r] are strictly
   * greater than [v]. *)
  type 'a t =
     Leaf
     Node of 'a t * 'a * 'a t
```

BST

```
module BstSet = struct
  let rec mem x = function
    Leaf -> false
    Node (l, v, r) \rightarrow
              x < v then mem x 1
      else if x > v then mem x r
      else true
```

BST

end

Back to performance

	Workload 1		Workload 2	
	insert	mem	insert	mem
ListSet	35s	106s	35s	106s
BstSet	130s	149s	0.07s	0.07s

Workloads

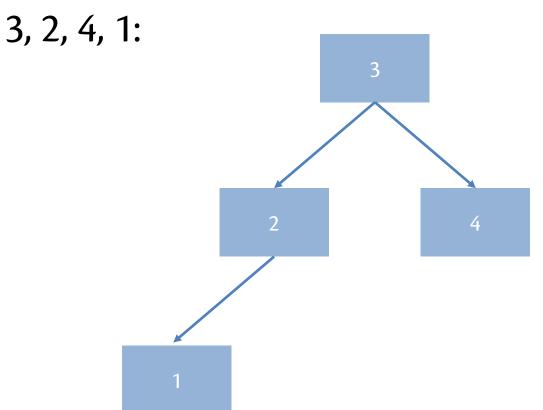
- Workload 1:
 - insert: 50,000 elements in ascending order
 - mem: 100,000 elements, half of which not in set

- Workload 2:
 - insert: 50,000 elements in random order
 - mem: 100,000 elements, half of which not in set

Insert in random order

Resulting tree depends on exact order

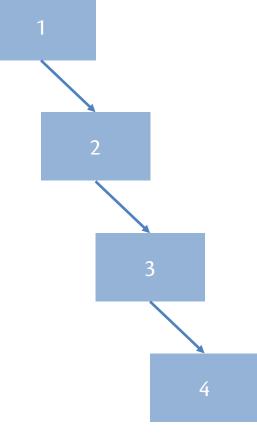
One possibility for inserting 1..4 in random order



Insert in linear order

Only one possibility for inserting 1..4 in linear order

1, 2, 3, 4:

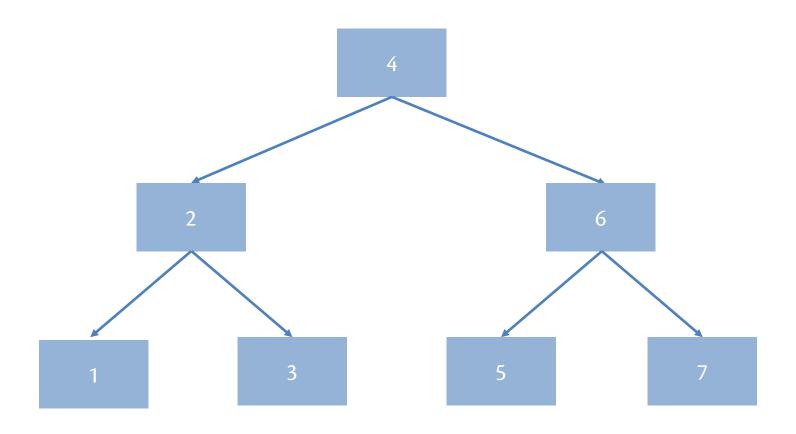


unbalanced: leaning toward the right

When trees get big

- Check out:
 - -linear bst 100
 - -rand bst 100
- Inserting next element in linear tree always takes
 n operations where n is number of elements in
 tree already
- Inserting next element in randomly-built tree might take far fewer...

Best case tree



all paths through *perfect binary tree* have same length: $log_2(n+1)$, where n is the number of nodes, recalling there are implicitly leafs below each node at bottom level

Performance of BST

- insert and mem are both O(n)
 - recall, big-O means worst case execution time
- But if trees always had short paths instead of long paths, could be better: O(log n)
- How could we ensure short paths?
 i.e., balance trees so they don't lean

Strategies for achieving balance

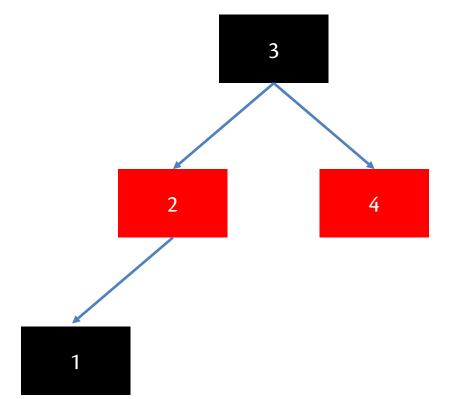
- In general:
 - Strengthen the RI to require balance
 - And modify insert to guarantee that RI
- Well known data structures:
 - 2-3 trees: all paths have same length
 - AVL trees: length of shortest and longest path from any node differ at most by one
 - Red-black trees: length of shortest and longest path from any node differ at most by factor of two
- All of these achieve O(log(n)) insert and mem

RED-BLACK TREES

Red-black trees

- [Guibas and Sedgewick 1978], [Okasaki 1998]
- Binary search tree with each node colored red or black
- Conventions:
 - Root is always black
 - Empty leafs are considered to be black
- RI: BST +
 - No red node has a red child
 - Every path from the root to a leaf has the same number of black nodes

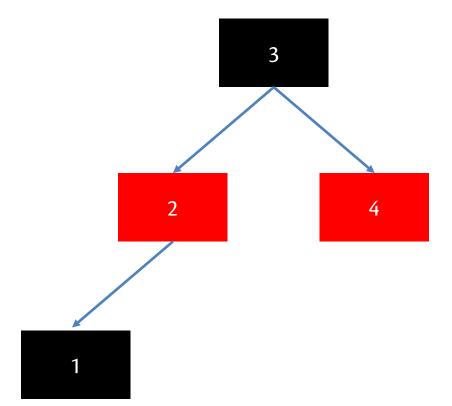
Is this a valid rep?



A. Yes

B. No

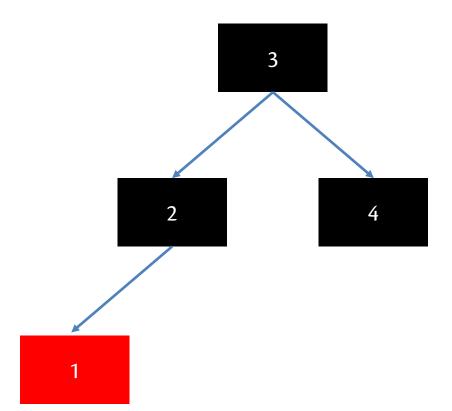
Is this a valid rep?



A. Yes

B. No

Is this a valid rep?

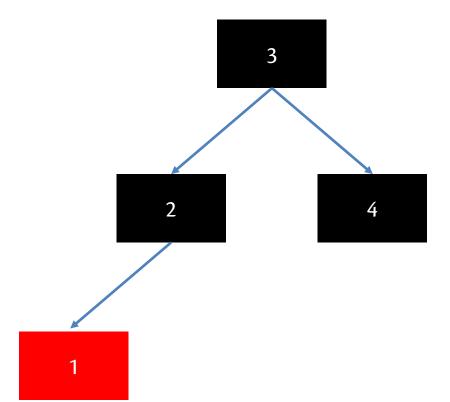


A. Yes

B. No

C. We are groot

Is this a valid rep?



A. Yes

B. No

Path length

- Recall invariants:
 - No red node has a red child
 - Every path from the root to a leaf has the same number of black nodes
- Together imply: length of longest path is at most twice length of shortest path
 - e.g., B-R-B-R-B vs. B-B-B-B

Red-black implementation

```
module RbSet = struct
  type color = Red | Blk
                                    Same as BST except
                                        for color
  type 'a t =
      Leaf
      Node of (color * 'a t * 'a * 'a t)
  let empty = Leaf
                                    Same as BST except
  let rec mem x = function
                                        for color
      Leaf -> false
     Node (, 1, v, r) \rightarrow
      if x < v then mem x 1
      else if x > v then mem x r
      else true
```

Red-black insert algorithm

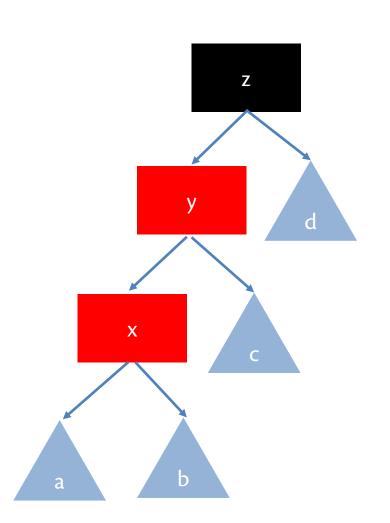
- Use same algorithm as BST to find place to insert
- Color inserted node Red
- Now RB invariant might be violated (Red-Red)
- Recurse back up through tree, restoring invariant at each level with a *rotation* that balances subtree
 - 4 possible rotations
 - corresponding to 4 ways a black node could have a red child with red grandchild
- Finally color root Black

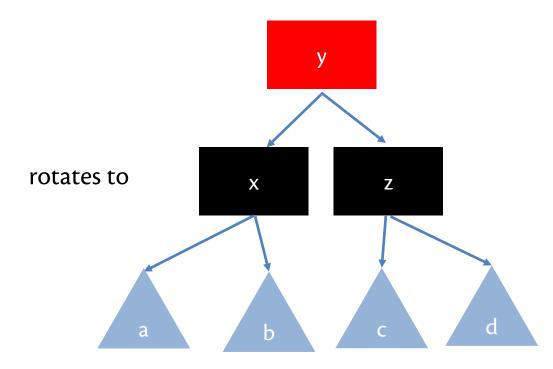
Red-black insert

color new node Red

```
let rec insert' x = function
                                             like BST insert
    Leaf -> Node(Red, Leaf, x, Leaf)
                                             except balance
    Node (col, l, v, r) \rightarrow
                                             each subtree on
    if x < v
                                              way back up
    then balance (col, (insert' x 1), v, r)
    else if x > v
    then balance (col, l, v, (insert' x r))
    else Node (col, l, x, r)
                                      color root Black
let insert x s =
  match insert' x s with
    Node (_, l, v, r) \rightarrow Node(Blk, l, v, r)
    Leaf -> failwith "impossible"
```

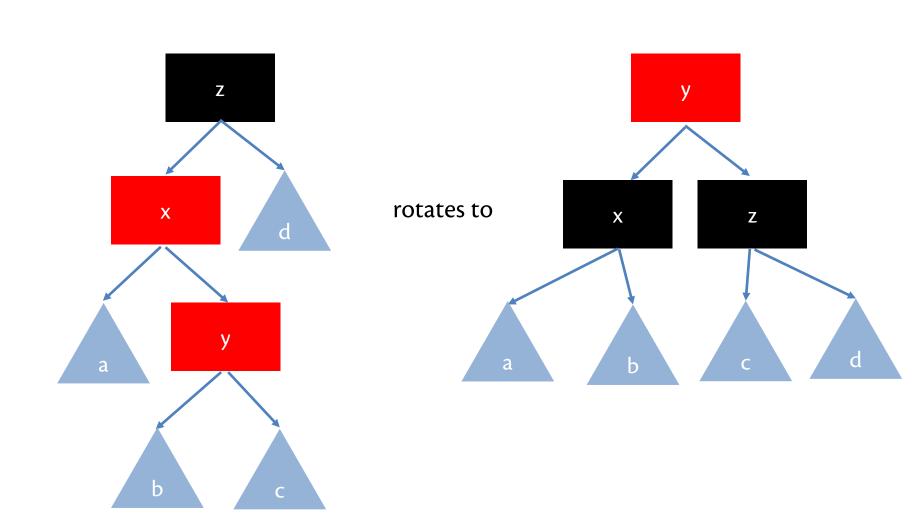
RB rotate (1 of 4)



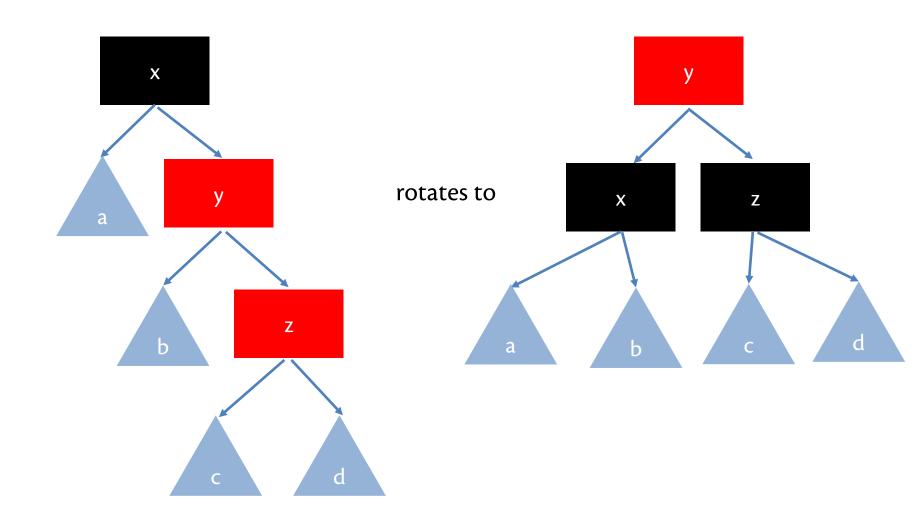


eliminates y-x violation but maybe y has a red parent: new violation keep recursing up tree

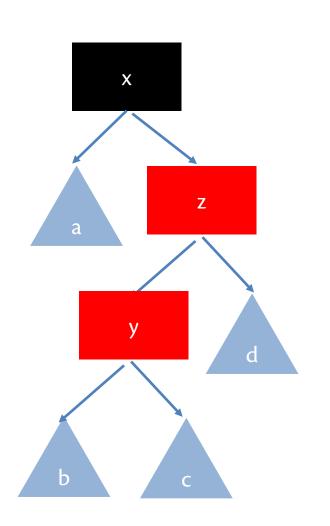
RB rotate (2 of 4)

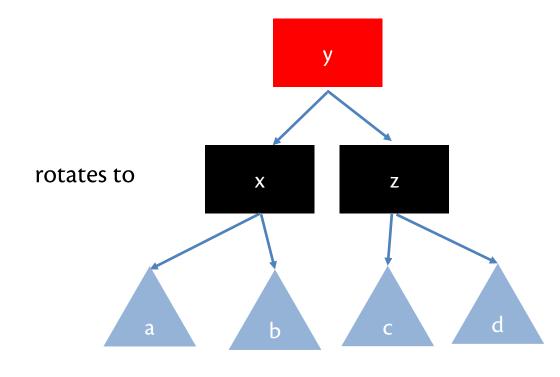


RB rotate (3 of 4)



RB rotate (4 of 4)





RB balance

Upcoming events

- [Wed] A2 due
- [10/12] Prelim

This is blissfully balanced.

WE ARE GROOT

Upcoming events

- [Wed] A2 due
- [10/12] **Prelim**

This is blissfully balanced.

WE ARE 3110

Upcoming events

- [Wed] A2 due
- [10/12] Prelim

This is blissfully balanced.

THIS IS 3110

2-3 TREES

2-3 trees

• [Hopcroft 1970]

John Hopcroft [Gates 426]

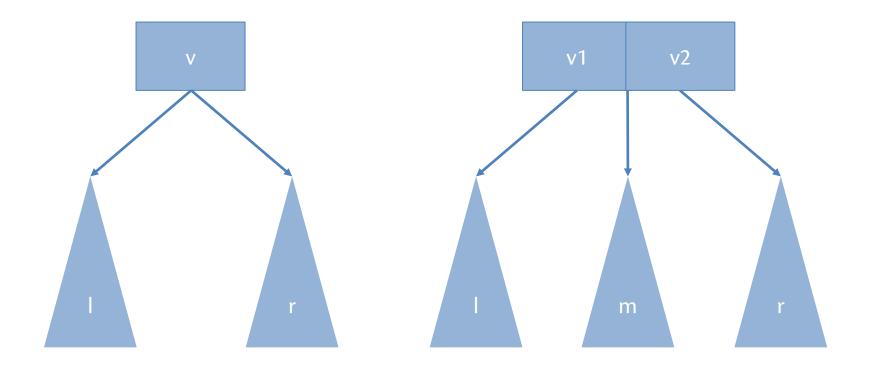
Turing Award Winner 1986

For fundamental achievements in the design and analysis of algorithms and data structures

b. 1939

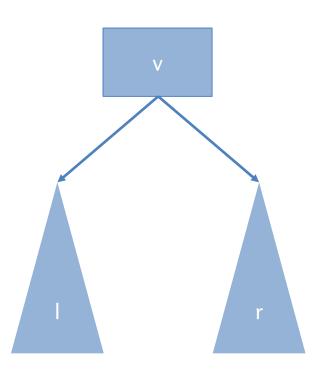
2-3 trees

- [Hopcroft 1970]
- Two kinds of nodes:



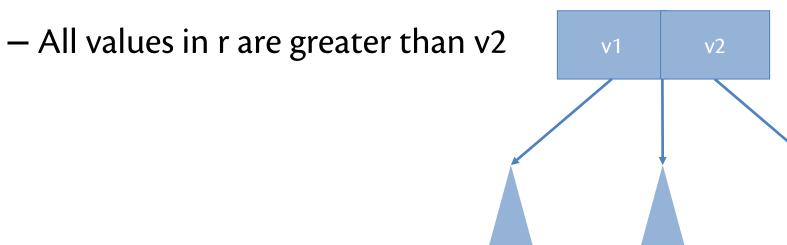
2-node

- Node contains one value and has two subtrees
- Obeys the BST invariant:
 - All values in I are less than v
 - All values in r are greater than v



3-node

- Node contains two values and has three subtrees
- Obeys something like the BST invariant:
 - All values in I are less than v1
 - All values in m are between v1 and v2

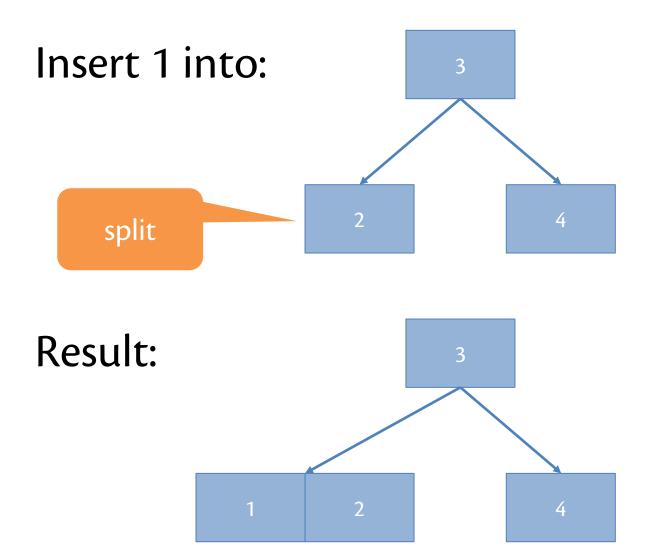


m

Inserting into 2-3 tree

- Strategy: split nodes as necessary
- Complete algorithm too long to give in slides
- But you will implement it in A3!

Example of inserting into 2-3 tree



Example of inserting into 2-3 tree

