CS 3110 Spring 2016
Problem Set 5
Version 2 (last modified April 19, 2016)

PS5: OCalf

Deadline: April 28, 2016

This assignment should be done with one partner. Sharing of code is permitted
only between you and your partner; sharing among larger groups is prohibited.

A baby camel is called a “calf” In this assignment you will implement an interpreter for
OCalf, a functional language containing many of the core features of OCaml.

Overview

Here is a Backus-Naur form (BNF) grammar for the syntax of OCalf expressions, to give you
a sense of what features are in the language:

bop

el

QX n T -

(* expressions *)
Olilbplslx
el bop e2
if el then e2 else e3
let x = el in e2
let rec x = el in e2
el e2
fun x > e
(el,e2)
Ce
match e with pl -> el |

:= (x binary operators *)

| pn -> en

+ - x> < =1>]<=]<>]7

(* patterns x)

Olilblslx]| Cpl (p1,p2)

integers
booleans

= strings

variable identifiers
constructor identifiers

Some of the ways that OCalf differs from OCaml are the following:

o All OCalf variants must be non-constant.
o OCalf has pairs, but not k-tuples for k£ > 3.
« OCalf does not have built-in (syntactic support for) lists.

o OCalf does not have a module system.

o OCalf has no imperative features.

However, in all other respects, remember OCalf is a subset of OCaml, so when in doubt, do
what OCaml does.

Some of the OCalf interpreter is already implemented for you. Your task is to implement
evaluation and type inference, as well as to build a test suite that you will submit. You will
need to understand the big-step environment model of OCaml to complete the interpreter.

Objectives

o Understand the design of an interpreter.

o Implement a big-step environment model semantics, including closures.

o Better understand OCaml itself by implementing some of its main features.

o Know the important building blocks of type inference, and implement one of them.

o Formulate a test suite that can detect errors in implementations other than your own.
o Work in a collaborative environment, and use Git version control.

o Acquire experience working on a large software engineering project.

Git

You are required to use Git (or another version control system). Throughout your development
of PS5, commit your changes to a shared repository. Use those checkins to provide checkpoints,
in case you need to restore your development to a previous point. Sync with a remote repository
to communicate code between you and your partner.

You will submit a log of your version control activity, which will be a minor portion of your
grade for this assignment. We expect proper use of version control; just commiting all your
code at the end will not receive credit for this portion of the assignment.

Private repos are of the utmost importance. A public repo would share your
code with the entire world, including your classmates, thus violating the course
policy on academic integrity. Therefore we require that you keep all your CS
3110 related code in private repos.

You can get private repos from the following services:

o Github Student (5 private repos)
« Bitbucket (unlimited private repos)
o Gitlab (unlimited private repos)

Recommended reading

The CS 3110 Style Guide

e The Try Git Tutorial

o Tower’s Git Cheat Sheet

o The scheldule for office hours. Start early and ask questions.

https://git-scm.com/
https://education.github.com/pack
https://bitbucket.org
https://about.gitlab.com/gitlab-com/
http://www.cs.cornell.edu/Courses/cs3110/2016sp/handouts/style.html
https://try.github.io
https://www.git-tower.com/blog/git-cheat-sheet/
http://www.cs.cornell.edu/courses/cs3110/2016sp/course_info.php#consulting_hours

Tasks

o Implement the evaluation of OCalf expressions, as described below under Part 1.

e Submit a test suite for evaluation, as described below under Part 2.

o Implement the type inference and checking of OCalf expressions, as described below
under Part 3.

o Write code that has good style and is well documented

« Use Git (or another version control system) as part of your development process, and
submit your commit log.

We must be able to compile and run your interpreter in the CS3110 virtual machine. You
may not change the names and types appearing in .mli files. Solutions that do not obey
these stipulations will receive minimal credit.

What we provide

In the release code you will find these files:

e Many .mli and .ml files, which are described below under Part 0.
o A template file written.txt for submitting your written feedback on the assignment.

What to turn in

Submit files with these names on CMS:

e psbsrc.zip, containing your solution code, your test suite, and your written feedback.
e vclog.txt containing your version control log.

To prepare psbsrc.zip for submission

From the directory that contains main.ml, bundle all your source code and your test suite
into a zip file with this command:

$ zip psbsrc.zip *.ml{,i,y,1} *.txt

Do not include any compiled bytecode files, otherwise your submission might become too big
to upload. Double check that you got all your files with this command:

$ zipinfo -1 psbsrc.zip
To prepare vclog.txt for submission

Run the following command in the directory containing main.ml:

$ git log --stat > vclog.txt

https://cms.csuglab.cornell.edu/

Permitted OCaml features

Imperative data structures are now permitted. You can use refs, arrays, for and while
loops if you want. Side effects are not necessarily bad, but keep in mind that over-use of
imperative features is bad style. We urge you to think carefully before choosing to use
imperative data structures, and leverage the functional features as much as you can.

Part 0: Understand the OCalf codebase

Your preliminary task is to familiarize yourself with the structure of the code we have shipped
to you. We provide the following modules, comprising both .m1 and .ml1i files, in the release
code:

e Eval and Infer have skeleton code for the functions that implement evaluation and
type inference. There are some unimplemented helper functions in these files that the
course staff found effective in their own solution. You are free to implement them,
change them, or remove them entirely.

o Ast and TypedAst contain the type definitions used in evaluation and type inference,
respectively. The TypedAst module also contains annotate and strip functions for
converting between the two.

o Examples and Lambda contain example OCalf expressions. Examples contains many
small examples from this writeup. Lambda contains a large example.

e Printer contains functions for printing out values of various types.

» Parse contains functions to construct ASTs from strings. It relies on a lexer and parser
implemented in lexer.mll and parser.mly.

Exercise: Skim each of the .m1i and .ml files in the release code, and plan to come back
and read them in more detail later as necessary.

Compiling and running

From the directory containing main.ml, run
$ cs3110 compile main.ml

to compile the interpreter. As the parser is compiled, it will produce a message 1
shift/reduce conflict. This is expected behavior.

To run the intepreter, we will use OCaml’s own REPL. After compiling, load utop. You can
use the OCalf interpreter by directly calling functions that implement it. For example,

"if true then 3110 else 0"
|> parse_expr

[> eval []

|> string of value

causes the string "if true then 3110 else 0" representing an OCalf expression to be
parsed into an OCalf AST, evaluated to an OCalf value, then converted to an OCaml string
suitable for printing. (Note that evaluation won’t yet succeed with the release code, because
eval is unimplemented.)

Note that the reason functions like eval are available in utop is that we provide an .ocamlinit
file in the release code'. When utop starts, it automatically #uses this file, which automatically

!Files whose names start with “.” are hidden; use 1s -A to show a directory listing that includes hidden
files.

#loads and opens many of the modules from the release code for your convenience in interactive
testing. Whenever you find yourself typing the same thing into the REPL more than once,
consider adding it to your .ocamlinit!

Part 1: Evaluation

Implement the function
eval : Eval.environment -> Ast.expr -> Eval.value

in eval.ml. This function evaluates OCalf expressions in the big-step environment model
semantics. For example,

eval [] (parse_expr "if false then 3 + 5 else 3 * 5"));;
- : value = VInt 15

(Note that we expose the representation of environments as association lists. Arguably this is
poor design: all the client of an environment needs to know is that it is a dictionary, and the
particular dictionary representation is irrelevant.)

Whenever evaluation reaches a place where the semantics gets stuck, meaning that eval-
uation could not meaningfully proceed but the expression being evaluated is not yet
a value, eval should produce the special value VError. For example, 3 + true and
match 3 with | 1 -> false should both evaluate to VError.

Although you are free to tackle the implementation of eval in any way you see fit, you are
strongly encouraged to follow the plan outlined below. Our test cases will proceed in the
plan’s order, so following the plan will maximize your chances of partial credit.

Step 0: Remind yourself of the big-step semantics of OCaml, because you are
essentially implementing that judgment.

Step 1: Implement eval without LetRec or Match.

Implement eval for unit, integers, Booleans, strings, BinOp, If, Var, Fun, Pair, Variant,
App, and Let.

Note: BinOp operators should work identically to their OCaml counterparts, with one
exception. For simplicity’s sake, comparison and equality is only defined on primitive
types (String, Int and Bool).

Step 2: Implement LetRec.

Implement eval for LetRec. This is tricky, because a binding is needed in the environment
for the defined name before its definition can be evaluated. We'll solve this problem with a
technique called backpatching.

To evaluate let rec f = el in e2 using backpatching, first evaluate el to a value v1 in
an environment where f is bound to a dummy value, which may be any value at all. (If
the value of f is used while evaluating el, it is an error. This would occur, for example, if

the programmer wrote let rec x = 3 + x in) Then imperatively update the binding
of £ to vi. This “ties the knot,” allowing v1 to refer to itself. Finally evaluate e2 in the
environment where f is bound to v1.

To support backpatching, the environment type contains binding ref’s instead of binding’s,
thus enabling bindings to be mutated.

Step 3: Implement Match.

Implement eval for Match. You do not need to check whether pattern matching is exhaustive
or whether there are unused match cases. Return VError if pattern matching fails at run
time.

Part 2: Test suite

As part of developing eval, you naturally will be constructing test cases that demonstrate
the (in)correctness of your implementation. Let’s take that one step further. The course staff
will develop many buggy implementations of eval. Your task is to construct a suite of test
cases that finds all our bugs.

Use test_eval.ml from the release code as a template. Add your test suite to the file. We
will copy that file (and only that file) into each of our buggy interpreters, then run

$ cs3110 compile test_eval.ml
$ cs3110 test test_eval.ml

We will examine the output to see whether your test suite correctly detects the bugs in our
interpreters.

Part 3: Type inference

OCalf’s type inference algorithm proceeds as follows:

1. Each node of the AST is annotated (aka decorated) with a unique type variable.

2. The AST is traversed to collect a set of equations between types that must hold for
the expression to be well-typed.

3. Finally, those equations are solved to find an assignment of types to the original
variables; this step is called unification.

If the unification phase discovers that the system is unsatisfiable, then it is impossible to give
a type to the expression, so a type error would be reported. If the system is underconstrained,
then there will be some “leftover” variables after unification. The typechecker would give
them user-friendly names like 'a and 'b.

Example. Consider (fun x -> 3 + x). The annotation phase would add a new type
variable to each subexpression:

fun fun:’t05

X + a.nnotate> x:’t04 +:7t03

3 X 3:°t02 x:’t01

Figure 1: parsing

Next, the collection phase would collect equations from each node:

o We know that (fun x -> e) : t1 -> t2if e:t2 under the assumption x:t1. Stated
differently, (fun (x:t1) -> e:t2) : t3ifandonlyift3 = t1 -> t2. Therefore, the
equation 't05 = 't04 -> 't03 would be collected from fun node.

o Similarly, the equations 't03 = int, 't02 = int, and 't01 = int would be collected
from the + node.

e The equation 't02 = int would be collected from the 3 node.

o We know that if x had type t when it was bound then it has type t when it is used.
Therefore, 't01 = 't04 would be collected from the x: 't01 node.

The collection phase can also raise exceptions if it encounters unresolvable errors during its
execution (i.e. an unbound constructor name).

Finally, the system of equations is solved in the unification phase, assigning int to 't01
through 't04, and int -> int to 'tO05.

We provide the annotation and unification phases of type inference for you; your task is to
implement the function

collect : variant_spec list -> annotated_expr -> equation list

in infer.ml. We strongly encourage you to follow this plan:

Step 1: Implement collect without Match or Variant.
Implement collect for all syntactic forms except Variant and Match.
Step 2: Partially implement collect for Match.

Implement collect for Match, but omit handling of PVariant patterns. Make sure the
bindings from the patterns are available while checking the bodies of the cases.

Step 3: Implement collect for Variant.

Extend collect to handle variants. Deriving the correct constraints for variants is tricky.
Consider this code:

type 'a list = Cons of 'a * 'a list | Nil of unit

let x = Cons(1,Nil ()) inmn
let y = Cons(true,Nil ()) in
42

An overly-strict implementation of collection might report a type error, if collection generates
constraints that force the separate occurrences of Nil and Cons in binding x and y to have
the same types. A better implementation would generate constraints with distinct type
variables, thus permitting the code above.

Have fun!

Fl

L — o~

JF
L|

L

\ A
\ A

F

F\

J L

sunnn

10

	PS5: OCalf
	Overview
	Objectives
	Git
	Recommended reading
	Tasks
	What we provide
	What to turn in
	To prepare ps5src.zip for submission
	To prepare vclog.txt for submission
	Permitted OCaml features
	Part 0: Understand the OCalf codebase
	Compiling and running
	Part 1: Evaluation
	Step 1: Implement eval without LetRec or Match.
	Step 2: Implement LetRec.
	Step 3: Implement Match.
	Part 2: Test suite
	Part 3: Type inference
	Step 1: Implement collect without Match or Variant.
	Step 2: Partially implement collect for Match.
	Step 3: Implement collect for Variant.

