
CS 3110 Spring 2016

Problem Set 2

Version 3 (last modi�ed February 27, 2016)

This version of the problem set has an additional problem compared to the �rst version,

�Hello, Curry-Howard!�

Changes

• Recommend naming for folding and recursive implementations. (2/17)

• Specify the mean of the empty list. (2/17)

• Removed references to the �Future Problem.� (2/22)

• Clari�ed what to submit (2/27)

What to Submit

You should submit the following �les to CMS:

• ps2.ml, containing your solution to the problems �Folding and Recursion,� �Natural

Numbers,� �Rational Numbers,� and �Skip Sets.�

• written.txt or written.pdf, containing your feedback on this problem set.

Overview

Problem Set 2 consists of this writeup as well as ps2.ml and ps2.mli, which contain the

release code for this assignment. The release code contains the following types, as well as

signatures and skeleton implementations for the modules and functions you are to implement.

These skeleton implementations consist of failwiths that will allow you to compile and use

the functions and modules you have implemented without having to implement everything

else. Recall that OCaml will type-check your implementations when you compile them using

cs3110 compile, helping you catch some errors before ever running your code. You should

take advantage of this while working on the assignment to avoid having to debug everything

at once.

In particular, if your code compiles with the provided ps2.mli, then your implementations

conform to the types we have speci�ed�which is very important. Code that does not compile

with cs3110 compile and the provided signature will be heavily penalized.

1

The following types are de�ned at the top of ps2.ml and ps2.mli. They are referenced

in later problems.

1 type cmp =

2 | Less

3 | Greater

4 | Equal

5

6 type ('a, 'b) part =

7 | Left of 'a

8 | Right of 'b

9 | Discard

Folding and Recursion

For this problem, write two implementations for each of the following functions: one should

use recursion and the other should use either List.fold_left or List.fold_right. We

recommend you name your folding implementation function_fold and your recursive im-

plementation function_rec. You can perform post-processing on the result of the fold.

1. map : ('a -> 'b) -> 'a list -> 'b list

map f [a1; ...; an] is [f a1; ... f an]. The order of elements must be pre-

served.

2. partition : ('a -> ('b, 'c) part) -> 'a list -> 'b list * 'c list

partition f a returns a pair of lists b and c, where each element β of b corresponds to

an element α of a such that f α = Left β, and where each element γ of c corresponds

to an element α of a such that f α = Right γ. Each element α of a such that f α =

Discard does not correspond to any element in b or c.

3. mean : float list -> float

mean [a1; ...; an] returns the arithmetic mean of a1, . . ., an. The mean of the

empty list is unde�ned.

4. all_prefixes : 'a list -> 'a list list

all_prefixes ls returns a list of all pre�xes of ls, including the empty list, ordered

from longest pre�x to shortest pre�x. For example, all_prefixes [1; 2; 3] is

[[1; 2; 3]; [1; 2]; [1]; []].

5. average_heading : float list -> float

average_heading [h1; ...; hn] takes �oats h1 through hn in a list, where each hi

2

indicates a compass heading between 0 and 360 inclusive, and returns the average of

their headings as a compass heading. Note that the average of 0 and 360 is not 180�it

is 360 (equivalently, 0). Behavior when an average heading cannot be well de�ned (for

example, what is the average of the headings 0 and 180?) is unde�ned.

Natural Numbers

Die ganzen Zahlen hat der liebe Gott

gemacht, alles andere ist

Menschenwerk.

God made the integers, all else is the

work of man.

Leopold Kronecker

In 1889, the Italian mathematician Giuseppe Peano published an axiomatic de�nition of

the natural numbers. Here is the gist of it:

(i) 0 is a natural number, and

(ii) if n is a natural number, S(n) is a natural number.

Interestingly, although at �rst this de�nition might seem much more theoretical than

practical, it turns out that this de�nition of the natural numbers can sometimes come in

handy for �practical� purposes. For example, the Sized Linear Algebra Package1 library

for OCaml implements static size-checking for matrix operations by encoding the sizes of

matrices in their types as follows:

1 type z

2 type 'n s

... so z s s represents 0 + 1 + 1.

Modules for the natural numbers

For this problem, implement two modules for the natural numbers: one using ints, and the

other using Peano's de�nition of the natural numbers. Both should implement the following

signature:

1https://github.com/akabe/slap

3

https://github.com/akabe/slap

1 module type N = sig

2 (** [t] represents a natural number. *)

3 type t

4

5 (** [zero] returns the [t] representing 0. *)

6 val zero : t

7

8 (** [succ x] returns the successor to [x]. *)

9 val succ : t -> t

10

11 (** [eq a b] returns [a = b] (but you might implement it

12 differently! *)

13 val eq : t -> t -> bool

14 end

The �rst module should be called IntNat and implement N using ints. The second module

should be called PeanoNat and implement N without using ints.

Note the following important things:

(i) M This signature makes the type t abstract. You should not use facts about your

implementation of t for the following problems.

(ii) M OCaml provides a structural comparison operator, =. Even though your implemen-

tation will likely allow = to return true i� two ts are equal, because = breaks the

abstraction barrier, you should only use eq to compare two ts.

(iii) zero is a value, not a function returning 0. It's immutable, which is why it's safe to

expose it like this.

(iv) Following from (i), the only way to obtain an N.t other than zero outside of the

module other than is through succ.

Operations on the natural numbers

Here is the signature for a module implementing some operations on the natural numbers:

1 module type NAT_OPS = sig

2 (* We expose that [t = PeanoNat.t] so that [PeanoNat.t]s

3 can be used with the functions in this module. *)

4 type t = PeanoNat.t

4

5

6 (** [add a b] returns [a + b]. *)

7 val add : t -> t -> t

8

9 (** [sub a b] returns [a - b]. If [a < b], the result is

10 undefined. *)

11 val sub : t -> t -> t

12

13 (** [cmp a b] returns [Less] if [a < b], [Greater] if

14 [a > b], and [Equal] if [a = b]. *)

15 val cmp : t -> t -> cmp

16

17 (** [mul a b] returns [a * b]. *)

18 val mul : t -> t -> t

19

20 (** [div a b] returns [(q, r)] such that [a = bq + r]

21 with [r < b]. *)

22 val div : t -> t -> t * t

23 end

For this problem, implement a module NatOps implementing NAT_OPS, with NatOps.t

equal to PeanoNat.t.

Note that you are implementing these functions in a separate module outside of PeanoNat

to enforce the abstractness of the type PeanoNat.t.

Rational Numbers

A rational number is a number of the form p/q, where p and q are integers and q is nonzero.

2/1, 4/2, and 3/7 are rational numbers; π and e are not.

All natural numbers are integers, all integers are rational numbers, all rational numbers

are real numbers, and so on. Some languages (in particular Scheme and some Lisps) support

a numeric tower for the representation of numbers, where the data types for numbers are

implemented as a �tower� of more complicated types for more complicated numbers, all

which can easily interact with each other in predictable ways. OCaml does not implement a

numeric tower, but does provide ints, floats, and even arbitrary-precision Big_int.ts. It

does not provide a type for rational numbers speci�cally.

For this problem, implement a module Rational for the rational numbers with the fol-

lowing signature:

5

1 module type Q = sig

2 type t

3

4 (** [make p q] returns [Some x] where [x] represents the

5 rational [p/q] if [q <> 0] and [None] otherwise. *)

6 val make : int -> int -> t option

7

8 (** [add a b] returns [a + b]. *)

9 val add : t -> t -> t

10

11 (** [inv x] returns [1/x]. *)

12 val inv : t -> t

13

14 (** [neg x] returns [-x]. *)

15 val neg : t -> t

16

17 (** [mul a b] returns [a * b]. *)

18 val mul : t -> t -> t

19

20 (** [eq a b] returns [a = b]. *)

21 val eq : t -> t -> bool

22

23 (** [cmp a b] returns [Less] if [a < b], [Greater] if

24 [a > b], and [Equal] if [a = b]. *)

25 val cmp : t -> t -> cmp

26

27 (** [div a b] returns [a / b]. *)

28 val div : t -> t -> t

29

30 (** [gcd a b] returns the gcd of [a] and [b]. *)

31 val gcd : t -> t -> t

32

33 (** [to_int x] returns [p] and [q] such that [p/q = x]. *)

34 val to_int : t -> int * int

35 end

As an additional resource, please refer to the notes for lecture 5 at http://www.cs.

cornell.edu/courses/cs3110/2016sp/lectures/5/CS3110-sp16-Lec5.pdf.

6

http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/5/CS3110-sp16-Lec5.pdf
http://www.cs.cornell.edu/courses/cs3110/2016sp/lectures/5/CS3110-sp16-Lec5.pdf

Skip Sets

A skip list is a probabilistic data structure that allows for average O(lg n) search, insert, and

delete on an ordered sequence of keys, each associated with a value. It is essentially a list of

lists emulating a binary search tree.

For example, the following �gure represents a skip list containing 10 key-value pairs num-

bered 1 through 10. Each box is a cons cell of the form x :: y, where the box contains

x and the arrow points to y. Each row represents one of the component lists. The NILs

correspond to [] in OCaml.

Let's suppose we're searching for an element x and that the sequence is sorted in increasing

order. We start at the top-most list and go right until the current element is either greater

than x or is []. Then we go back to the previous element (which less than x) and jump

one level down to the list below. We proceed this way until we reach the bottom-most level,

below which are the elements we are searching for. If you trace a path like this on the

diagram, you should see that we take on average O(lg n) steps. If the upper-level lists are

particularly badly chosen, we can be forced to take up to O(n) steps.

1 2 3 4 5 6 7 8 9 10head

NIL

NIL

NIL

NIL

Image by Wojciech Muªa, released into the public domain on Wikipedia.

For this problem, implement a skip set, a simpli�ed version of a skip list only supporting

o�ine creation and querying. Your module should be called SkipSet and implement the

following signature:

1 module type SKIP_SET = sig

2 (** An ['a t] represents a set containing elements of type

3 ['a]. *)

4 type 'a t

5

6 (** [make p xs] creates a new [t] containing the elements of

7 [xs]. [p] is the probability that an element in a leve

8 of the skip set is present in the next level of the skip

9 set. *)

10 val make : float -> 'a list -> 'a t

7

11

12 (** [mem x set] returns [true] iff [x] is an element of

13 [set]. *)

14 val mem : 'a -> 'a t -> bool

15 end

Our �rst-pass implementation is about three times as slow as OCaml's Set on floats with

p = 0.25 (but still more than �ve hundred times faster than a brute-force search). Try to

make yours faster! At the least, your implementation of mem should not be slower than a

brute-force implementation.

For further reference, the Wikipedia article at https://en.wikipedia.org/wiki/Skip_

list might be helpful.

Comments

In the provided written.txt �le, please include any comments you have about the problem

set or your implementation. This would be a good place to list any problems with your

submission that you weren't able to �x or to give us general feedback about the problem set.

8

https://en.wikipedia.org/wiki/Skip_list
https://en.wikipedia.org/wiki/Skip_list

