
Intro to OCaml and Functional Programming
(Recitation 1 and 2)

CS 3110, 2012 Fall



Topics (week 1)

● Imperative vs. Functional
● OCaml expressions
● Evaluating expressions
● Tuples, records
● Defining new data types
● Pattern matching
● Type inference



Imperative vs. Functional programs

● Imperative
○ c1; c2; .... ; cn
○ sequential

● Functional
○ e1 -> e2 -> ... -> v
○ a series of reductions

● functions are first-class objects
○ pass around functions
○ partially apply functions
○ and a looooot more



Imperative vs. Functional styles

● No side effects
○ void function(T x)      vs. T function (T x )

● Much easier to reason about
● Powerful paradigms like MapReduce



OCaml expression

● Values
○ bool: true, false
○ int: 0, 1, ... 
○ float: 
○ string, char

● Expressions
○ BNF (Backus-Naur form)
○ e ::= c | unop e | e1 binop e2 | if e1 then e2 else e3 | (e)



More expressions

● Declarations 
○ let x = e

● Local bindings in expressions
○ let x = e in 
○    some expression using x

○ e ::= ... | let id = e1 in e2 

● A typical OCaml program consists of a list of 
declarations (and module definitions)



Tuples

● ex. pair<A,B> in C++
● type: 'a * 'b 
● Extracting parts:

○ let (x,y) = tuple in .... 
○ fst tuple
○ snd tuple

● Easy to combine multiple data



Records

● similar to primitive C structs, Java classes
● Unordered, unlike tuples
● type student = {id:int ; name:string}
● Each field has a label
● More convenient than tuples when extracting 

individual parts



Lists

● basic datatype in functional languages
● can add/retrieve the head (front) of the list
● no random access
● still can do a lot!



Some words about types

● Every (well-formed) expression has a type
● Different from imperative languages

○ what is the type of int x; x = 2; cout << x ; 
●



Practice with types

● 5
● > int
● ("abc", 0.9)
● > string * float
● None
● > 'a option
● fun x y = x^y
● > string -> string -> string
● List.hd
● > 'a list -> 'a
● fun x = x x



Defining new data types

● type answer = Yes | No

● "sum" types

● type num = Int of int | Real of float

● type ('a, 'b) either = Left of 'a | Right of 'b



Pattern matching

type t = A | B| C

let f (x : t) = 
  match x in
  | A -> ...
  | B -> ...
  | C -> ...



The "underscore" case

Use   |    _ ->  .... as a wildcard to match "all 
others."
● Useful when you don't distinguish the 

remaining cases
    match lst with 
     | h1::h2::t -> ....
     | _ -> failwith "Not enough args"

● It may be better practice spell out all cases



option type

type 'a option = Some of 'a | None

forces you to deal with the "null" case

useful for returning "if yes, this is the answer, 
otherwise, nothing"



Type inference

● Types
○ int, bool, string
○ int -> int list
○ 'a list -> int, 'a -> 'b -> 'a * 'b

● You can annotate types explicitly...
○ let f (x : string) (y: int) : float = ...

● Or OCaml can infer for you!
○ let f x = x ** 2 ;;
○ val f : float -> float <fun>

● Why annotating is good, nonetheless
○ readability
○ to validate that your function/expression has correct 

type


