
gamedesigninitiative
at cornell university

the

Steering in Games

Guest Lecture:

gamedesigninitiative
at cornell university

the

Pathfinding
  You are given

  Starting location A
  Goal location B

  Want valid path A to B
  Avoid “impassible” terrain
  Eschew hidden knowledge

  Want natural path A to B
  Reasonably short path
  Avoid unnecessary turns
  Avoid threats in the way

Steering in Games

A B

gamedesigninitiative
at cornell university

the

Pathfinding as Search
  Break world into grid

  Roughly size of NPCs
  Terrain is all-or-nothing

  Majority terrain of square
  Terrain covering “center”

  Gives us a weighted graph
  Nodes are grid centers
  Each node has 8 neighbors
  Weight = distance/terrain

  Search for shortest path!

Steering in Games

A B

gamedesigninitiative
at cornell university

the

Steering
  Uses physics, not search

  Use forces to get velocity
  Goal pulls object towards
  Obstacles push object away

  Good as “local” search
  Just trying to find next step
  Recomputed every step
  Not great for long paths

  Why would you do this?

Steering in Games

A B

gamedesigninitiative
at cornell university

the

Which One is Best?
Pathfinding

  Cost depends on grid size
  Grid provides terrain graph
  Algorithms are expensive

  Ideal for static terrain
  Finds complex, winding paths
  Compute the path only once
  Recompute if obstacles move

  Ideal for coordinated NPCs
  Use “military formations”

Steering
  Cost depends on # obstacles

  Must look at all obstacles
  Distance to obstacle not issue

  Ideal for dynamic terrain
  Only finds the next step
  Recomputed every time step
  Reacts to moving obstacles

  Ideal for uncoordinated NPCs
  Treat other NPCs as obstacles

Steering in Games

gamedesigninitiative
at cornell university

the

Types of Steering
  Ad hoc methods

  Move in straight line
  If possible collision, move

  Artificial potential fields
  Obstacles have “charges”
  Creates electrical field
  Natural path through field

  Vortex fields
  Obstacles have “currents”
  Push around obstacles

Steering in Games

gamedesigninitiative
at cornell university

the

Types of Steering
  Ad hoc methods

  Move in straight line
  If possible collision, move

  Artificial potential fields
  Obstacles have “charges”
  Creates electrical field
  Natural path through field

  Vortex fields
  Obstacles have “currents”
  Push around obstacles

Steering in Games

gamedesigninitiative
at cornell university

the

Types of Steering
  Ad hoc methods

  Move in straight line
  If possible collision, move

  Artificial potential fields
  Obstacles have “charges”
  Creates electrical field
  Natural path through field

  Vortex fields
  Obstacles have “currents”
  Push around obstacles

Steering in Games

gamedesigninitiative
at cornell university

the

Ad Hoc Steering

Steering in Games

1.  Compute nearest approach
  Assume constant velocity
  Find time that it is closest
  Repeat for all objects

gamedesigninitiative
at cornell university

the

Ad Hoc Steering

Steering in Games

1.  Compute nearest approach
  Assume constant velocity
  Find time that it is closest
  Repeat for all objects

2.  Find first collision
  Plug in time from last step
  See if objects collide
  Pick one with time least

gamedesigninitiative
at cornell university

the

Ad Hoc Steering

Steering in Games

1.  Compute nearest approach
  Assume constant velocity
  Find time that it is closest
  Repeat for all objects

2.  Find first collision
  Plug in time from last step
  See if objects collide
  Pick one with time least

3.  Adjust object velocity
  Nudge from the collision
  Determine new velocity

gamedesigninitiative
at cornell university

the

Computing Nearest Approach

Steering in Games

gamedesigninitiative
at cornell university

the

Computing Nearest Approach

Steering in Games

Not that simple!

gamedesigninitiative
at cornell university

the

Computing Nearest Approach

Steering in Games

1.  Compute relative velocity

gamedesigninitiative
at cornell university

the

Computing Nearest Approach

Steering in Games

u
v v = su

1.  Compute relative velocity

2.  Normalize the vector

3.  Compute relative speed

gamedesigninitiative
at cornell university

the

Computing Nearest Approach

Steering in Games

1.  Compute relative velocity

2.  Normalize the vector

3.  Compute relative speed

4.  Compute relative position

gamedesigninitiative
at cornell university

the

Computing Nearest Approach

Steering in Games

1.  Compute relative velocity

2.  Normalize the vector

3.  Compute relative speed

4.  Compute relative position

5.  Project position on velocity

gamedesigninitiative
at cornell university

the

Computing Nearest Approach
1.  Compute relative velocity

2.  Normalize the vector

3.  Compute relative speed

4.  Compute relative position

5.  Project position on velocity

6.  Get time from projection

Steering in Games

u

p = (w•u)u

w

t = (w•u)/s

gamedesigninitiative
at cornell university

the

Check For Collision

Steering in Games

v

u

p

q

p+tv
q+tu

No collision!

gamedesigninitiative
at cornell university

the

Check For Collision
  Objects != points

  Must have size & shape
  Collide if any overlap

  Easy if using circles
  Line between centers
  Get segment length l
  Check if l < r1+r2

  Find first collision!

Steering in Games

r1

r2
l

gamedesigninitiative
at cornell university

the

Adjust Object Velocity
1.  Move objects to position

2.  Draw segment between centers

3.  Extend segment appropriately

4.  Adjust velocity vector

Steering in Games

gamedesigninitiative
at cornell university

the

Adjust Object Velocity
1.  Move objects to position

2.  Draw segment between centers

3.  Extend segment appropriately

4.  Adjust velocity vector

Steering in Games

gamedesigninitiative
at cornell university

the

Adjust Object Velocity

Steering in Games

  No set way to adjust
  Hence “ad hoc” steering

  Can rotate on to new line
  Compute old magnitude
  Compute new unit vector
  Multiply by old magnitude

  Can project on to line
  Start with old vector is v
  Compute new unit vector u
  New vector is (v•u) u

gamedesigninitiative
at cornell university

the

What If No Collisions?
  Go to your goal!

  Going somewhere, right?
  Also a velocity adjustment

  Avoid “whiplash”
  Limit angle of change
  “Turning radius”

  Exact method up to you

Steering in Games

gamedesigninitiative
at cornell university

the

Optimizations

Steering in Games

  Bound your search!
  This is lots of linear algebra
  Other object might move
  Only move if you have to

  Bounding boxes
  Center box on object
  Only check objects inside box
  Relatively quick test

  Angular cones
  Can only turn so much
  Limit to inside turning cone
  Test is two dot products

gamedesigninitiative
at cornell university

the

Optimizations

Steering in Games

  Bound your search!
  This is lots of linear algebra
  Other object might move
  Only move if you have to

  Bounding boxes
  Center box on object
  Only check objects inside box
  Relatively quick test

  Angular cones
  Can only turn so much
  Limit to inside turning cone
  Test is two dot products

gamedesigninitiative
at cornell university

the

Optimizations

Steering in Games

  Bound your search!
  This is lots of linear algebra
  Other object might move
  Only move if you have to

  Bounding boxes
  Center box on object
  Only check objects inside box
  Relatively quick test

  Angular cones
  Can only turn so much
  Limit to inside turning cone
  Test is two dot products

gamedesigninitiative
at cornell university

the

Ad Hoc Steering: Problem

Steering in Games

gamedesigninitiative
at cornell university

the

Potential Fields
  Much more physics based

  Goal pulls towards
  Obstacles push away

  Create an energy field
  E(p) = energy field
 
  “Steepest decent”

  Get velocity from force
  v = F/m

Steering in Games

p

F = ∇pE

“Solves” cluster problem

gamedesigninitiative
at cornell university

the

Potential Fields
 

  Ag = attraction force
  Rq = repulsion force

  Gradient is linear
 

  Just need it for Ag, Rq
  Or fast approximations

Steering in Games

F = ∇pAg +
∑

q

∇pRq

E = Ag +
∑

q

Rq

gamedesigninitiative
at cornell university

the

Potential Fields
  Repulsion Field

  q: obstacle location
  r0: vehicle radius
  r1: obstacle radius
  s: separation factor (=1.05)
  c0: vehicle “charge”
  c1: goal “charge”

  Field computation
 

 

Steering in Games

d = |q− p|− s ∗ (r0 + r1)

Rq =
c0c1

d

gamedesigninitiative
at cornell university

the

Potential Fields
  Attraction Field

  k: coefficient (= 1/e)
  b: breaking distance (= 1)
  g: goal location
  c0: vehicle “charge”
  c1: goal “charge”

  Field computation

 

 

Steering in Games

a(d) =

{
(d− b) ∗ (−2

b∗e) + 1
e if d > b

e−
d2

b2 otherwise
Ag = −kc0c1a(|g− p|)

gamedesigninitiative
at cornell university

the

Generalizing Potential Fields
  Not limited to circles!

  Take obstacle shape
  Surround it by contours
  Equidistant from shape

  Basic idea: capsules
  “Line with radius”
  Distance to line in Rq

  Use on polygon boundary

  Not needed for assignment

Steering in Games

r

r

r

gamedesigninitiative
at cornell university

the

Potential Fields: Problems
  Expensive!

  Did you see an exponent?
  Need fast approximations
  Idea: Taylor polynomials

  Local minima
  All forces add to zero
  Goal on other side of wall
  Why pathfinding is better

  Possibly jittery
  Lots of overcompensation

Steering in Games

gamedesigninitiative
at cornell university

the

Vortex Fields
  Like ad hoc steering

  Move in straight line
  If any collision, move

  Vortex tells how to move
  Pushes object around
  Only use nearest field

  State of the art steering
  Used in Clancy games

  Tricker to get right

Steering in Games

gamedesigninitiative
at cornell university

the

Vortex Fields
 Vector3 VortexForce(Agent a, Obstacle o) {  
 Vector3 distV = (o.getPos()–a.getPos());  
 float distSq = distV.magSquare();  
 if (distSq <= o.fieldRadiusSq) {  
 float cross = 
 distV.cross(a.getVelocity()).getZ(); 
 if (cross < 0) { 
 return turnLeft(distV);  
 } else {  
 return turnRight(distV);  
 }  
}

Steering in Games

gamedesigninitiative
at cornell university

the

Pathfinding in Practice
  Navigation Meshes

  Indicates walkable areas
  2D geometric representation
  Connected convex shapes
  Graph: center-to-center

  Pathfinding + Steering
  A* search on graph
  Only pathfind once
  Steering node-to-node

Steering in Games

gamedesigninitiative
at cornell university

the

Summary
 Steering is an alternative to pathfinding
 Recompute velocity each round
 Reacts well to dynamic obstacles

 Three main forms of steering
 Ad hoc steering  best for assignment
  Potential fields
 Vortex fields

Steering in Games

