Guest Lecture:

Steering in Games

Pathfinding

® You are given
® Starting location 4

® (Goal location B

® Want valid path 4 to B
® Avoid “impassible” terrain
® Eschew hidden knowledge

® Want natural path 4 to B
® Reasonably short path

® Avoid unnecessary turns

® Avoid threats in the way

. . the . ™ 0 o
Steering in Games gamedesigninitiative
at cornell university
|

Pathfinding as Search

® Break world into grid
® Roughly size of NPCs

® Terrain 1s all-or-nothing

® Majority terrain of square

® Terrain covering “center”

® (Gives us a weighted graph

® Nodes are grid centers . °
® Fach node has 8 neighbors :

® Weight = distance/terrain

® Search for shortest path!

. . the . ™ 0 o
Steering in Games gamedesigninitiative
at cornell university
|

Steering

® Uses physics, not search

® Use forces to get velocity

® @Goal pulls object towards

® Obstacles push object away

® (Good as “local” search
® Just trying to find next step

® Recomputed every step

® Not great for long paths

® Why would you do this?

. . the . ™ 0 o
Steering in Games gamedesigninitiative
at cornell university
|

Which One is Best?

Pathfinding Steering

® Cost depends on grid size ® (Cost depends on # obstacles
® (Grid provides terrain graph ® Must look at all obstacles
® Algorithms are expensive ® Distance to obstacle not issue
® Jdeal for static terrain ® Ideal for dynamic terrain
® Finds complex, winding paths ® Only finds the next step
® Compute the path only once ® Recomputed every time step
® Recompute if obstacles move ® Reacts to moving obstacles
® [deal for coordinated NPCs ® [deal for uncoordinated NPCs
® Use “military formations” ® Treat other NPCs as obstacles

- th —
Steering in Games gamedesigninitiative

at cornell university
—

Types of Steering

® Ad hoc methods
® Move in straight line

® [f possible collision, move

® Artificial potential fields
® (Obstacles have “charges”
® (reates electrical field
® Natural path through field

® Vortex fields

\\
~
-
-
S
~
\\
S -
\\ Pd
~_ ~
S
~
\\

® (bstacles have “currents”
® Push around obstacles

Steering in Games

the I PO

gamedesigninitiative
at cornell university
L

Types of Steering

® Ad hoc methods

® Move in straight line

® [f possible collision, move

® Artificial potential fields
® (Obstacles have “charges”
® (reates electrical field
® Natural path through field

® Vortex fields

® (bstacles have “currents”
® Push around obstacles

— th —

Steering in Games gamedesigninitiative
at cornell university
|

Types of Steering

® Ad hoc methods

® Move in straight line

® [f possible collision, move

® Artificial potential fields
® (Obstacles have “charges”
® (reates electrical field
® Natural path through field

® Vortex fields
® (bstacles have “currents”

® Push around obstacles

— th —

Steering in Games gamedesigninitiative
at cornell university
|

Ad Hoc Steering

1. Compute nearest approach

® Assume constant velocity

® Find time that it 1s closest

® Repeat for all objects - /

- th —
Steering in Games gamedesigninitiative

at cornell university
E—

Ad Hoc Steering

1. Compute nearest approach

® Assume constant velocity
® Find time that it is closest

® Repeat for all objects

2. Find first collision

® Plug in time from last step

® See if objects collide

® Pick one with time least

Steering in Games

the I PO

gamedesigninitiative
at cornell university
L

Ad Hoc Steering

1. Compute nearest approach

® Assume constant velocity
® Find time that it is closest

® Repeat for all objects

2. Find first collision

® Plug in time from last step

® See if objects collide

® Pick one with time least

3. Adjust object velocity
® Nudge from the collision

® Determine new velocity

Steering in Games

the I PO

gamedesigninitiative
at cornell university
L

Computing Nearest Approach

. . the . ™ 0 o
Steering in Games gamedesigninitiative

at cornell university
—

Computing Nearest Approach

Not that simple!

. . the . ™ 0 o
Steering in Games gamedesigninitiative

at cornell university

Computing Nearest Approach

1. Compute relative velocity

— th —
Steering in Games gamedesigninitiative
at cornell university

Computing Nearest Approach

1. Compute relative velocity

2. Normalize the vector

3. Compute relative speed

— th —
Steering in Games gamedesigninitiative
at cornell university

Computing Nearest Approach

2. Normalize the vector

1. Compute relative velocity

3. Compute relative speed

4. Compute relative position

— th —
Steering in Games gamedesigninitiative
at corne 11 university

Computing Nearest Approach

1.
2.
3.
4,
5.

Compute re

Normalize t

ative velocity

ne vector

Compute re

ative speed

Compute re!

ative position

Project position on velocity

Steering in Games

I
the : S TEIE
gamedesigninitiative
at corne 11 university

Computing Nearest Approach

1. Compute relative velocity

2. Normalize the vector /'

3. Compute relative speed !

4. Compute relative position (= (wo)ls
5. Project position on velocity .;""i) = (Wu)u

6. Get time from projection ‘W

— th —
Steering in Games gamedesigninitiative
at corne 11 university

Check For Collision

Check For Collision

® Objects != points
® Must have size & shape
® (Collide 1f any overlap

® Fasy if using circles
® [.inec between centers

® Get segment length /
® Checkif/<r/+r,

® FKind first collision!

! g the 5 o _0n0_sc
Steering in Games gamedesigninitiative
at cornell university

Adjust Object Velocity

1. Move objects to position

Draw segment between centers

2
3. Extend segment appropriately
4

Adjust velocity vector

Adjust Object Velocity

1. Move objects to position

Draw segment between centers

2
3. Extend segment appropriately
4

Adjust velocity vector e

Adjust Object Velocity

® No set way to adjust

® Hence “ad hoc” steering

® (an rotate on to new line
® (Compute old magnitude

® (Compute new unit vector

® Multiply by old magnitude

® (Can project on to line
® Start with old vector is v
® (Compute new unit vector u

® New vector i1s (veu) u

. . the . ™ 0 o
Steering in Games gamedesigninitiative

at cornell university
—

What If No Collisions?

® Go to your goal!

. . @
® (Going somewhere, right? \
\
® Also a velocity adjustment !
A I94 : 29 '
® Avoid “whiplash> T \

® Limit angle of change /.
® “Turning radius”

® Exact method up to you

Optimizations

® Bound your search!
® This 1s lots of linear algebra
® Other object might move
® Only move if you have to

® Bounding boxes
® (Center box on object
® Only check objects inside box
® Relatively quick test

® Angular cones
® (Can only turn so much
® Limit to inside turning cone

® Test is two dot products

Steering in Games

the

gamedesigninitiative

at cornell university

Optimizations

® Bound your search!

® This 1s lots of linear algebra
® Other object might move

® Only move if you have to

® Bounding boxes
® (Center box on object
® Only check objects inside box

® Relatively quick test

® Angular cones

® (Can only turn so much

® Limit to inside turning cone

® Test is two dot products

Optimizations

® Bound your search!

® This 1s lots of linear algebra
® Other object might move

® Only move if you have to

® Bounding boxes
® (Center box on object
® Only check objects inside box
® Relatively quick test

® Angular cones

® (Can only turn so much

® Limit to inside turning cone

® Test is two dot products

Ad Hoc Steering: Problem

. . the . ™ 0 o
Steering in Games gamedesigninitiative

at cornell university
—

Potential Fields

® Much more physics based

® Goal pulls towards

® (Obstacles push away

® (Create an energy field
® FE(p) = energy field
® F=V,E

® “Steepest decent”

® Get velocity from force

® v=F/m

“Solves” cluster problem

. . the . ™ 0 o
Steering in Games gamedesigninitiative
at corne 11 university

Potential Fields

® E=Ag+ » Rq
q

® Ag = attraction force

® R,= repulsion force

® (Gradient is linear
e F=VpAg+ Y VpR4
q

® Just need 1t for Ag, R,

® Or fast approximations

Potential Fields

® Repulsion Field

® q: obstacle location

ro: vehicle radius

r,: obstacle radius

s: separation factor (=1.05)

c,: vehicle “charge”

. 113 29
c,: goal “charge

® Field computation
o d=|q—p|—s*(ro+r)

Potential Fields

® Attraction Field
® f: coefficient (= 1/¢)
®): breaking distance (= 1)
® o: ooal location

® ¢, vehicle “charge”

® ,: goal “charge”

® Field computation ‘/'

. a(d)_{(db)*(2)+; if d>b

bxe
_d?

e b2 otherwise

o Ay = —kcocra(|g — p|)

. . the . ™ 0 o
Steering in Games gamedesigninitiative

at cornell university

Generalizing Potential Fields

® Not limited to circles!

® Take obstacle shape
® Surround it by contours

® Equidistant from shape

® Basic idea: capsules
® “Line with radius”
® Distance to line in Rq

® Use on polygon boundary

® Not needed for assignment

Steering in Games

Potential Fields

: Problems

® Expensive!
® Did you see an exponent?
® Need fast approximations

® Jdea: Taylor polynomials

® Local minima
® All forces add to zero
® (Goal on other side of wall
® Why pathfinding is better

® Possibly jittery

® [ots of overcompensation

Vortex Fields

® [ike ad hoc steering

® Move in straight line

® [f any collision, move

® Vortex tells how to move
® Pushes object around

® Only use nearest field

® State of the art steering

® Used in Clancy games

® Tricker to get right

- th —
Steering in Games gamedesigninitiative

at cornell university
—

Vortex Fields

Vector3 VortexForce(Agent a, Obstacle o) {
Vector3 distV = (o.getPos()—a.getPos());
float distSqg = distV.magSquare();
if (distSg <= o.fieldRadiusSqg) {

float cross =

distV.cross(a.getVelocity()).getZz();
1f (cross < 0) {

return turnLeft(distV);
} else {

return turnRight(distV);

}

— th —
Steering in Games gamedesigninitiative
at cornell university

Pathfinding in Practice

® Navigation Meshes
® Indicates walkable areas
® 2D geometric representation
® (Connected convex shapes

® Graph: center-to-center

® Pathfinding + Steering

® A* search on graph

® Only pathfind once

® Steering node-to-node

- th —
Steering in Games gamedesigninitiative

at cornell university
E—

Summary

® Steering 1s an alternative to pathfinding
® Recompute velocity each round
® Reacts well to dynamic obstacles

® Three main forms of steering
® Ad hoc steering € best for assignment
® Potential fields
® Vortex fields

— th —
Steering in Games gamedesigninitiative
at corne 11 university

