Guest Lecture:

Steering in Games

Pathfinding

- You are given
 - Starting location A
 - Goal location B
- Want **valid** path *A* to *B*
 - Avoid "impassible" terrain
 - Eschew hidden knowledge
- Want **natural** path A to B
 - Reasonably short path
 - Avoid unnecessary turns
 - Avoid threats in the way

Pathfinding as Search

- Break world into grid
 - Roughly size of NPCs
 - Terrain is all-or-nothing
 - Majority terrain of square
 - Terrain covering "center"
- Gives us a weighted graph
 - Nodes are grid centers
 - Each node has 8 neighbors
 - Weight = distance/terrain
- Search for shortest path!

Steering

- Uses physics, not search
 - Use forces to get velocity
 - Goal pulls object towards
 - Obstacles push object away
- Good as "local" search
 - Just trying to find next step
 - Recomputed every step
 - Not great for long paths
- Why would you do this?

Which One is Best?

Pathfinding

- Cost depends on grid size
 - Grid provides terrain graph
 - Algorithms are expensive
- Ideal for static terrain
 - Finds complex, winding paths
 - Compute the path only once
 - Recompute if obstacles move
- Ideal for coordinated NPCs
 - Use "military formations"

Steering

- **Cost** depends on # obstacles
 - Must look at all obstacles
 - Distance to obstacle not issue
- Ideal for dynamic terrain
 - Only finds the next step
 - Recomputed every time step
 - Reacts to moving obstacles
- Ideal for uncoordinated NPCs
 - Treat other NPCs as obstacles

Types of Steering

Ad hoc methods

- Move in straight line
- If possible collision, move
- Artificial potential fields
 - Obstacles have "charges"
 - Creates electrical field
 - Natural path through field
- Vortex fields
 - Obstacles have "currents"
 - Push around obstacles

Types of Steering

- Ad hoc methods
 - Move in straight line
 - If possible collision, move

Artificial potential fields

- Obstacles have "charges"
- Creates electrical field
- Natural path through field
- Vortex fields
 - Obstacles have "currents"
 - Push around obstacles

Types of Steering

- Ad hoc methods
 - Move in straight line
 - If possible collision, move
- Artificial potential fields
 - Obstacles have "charges"
 - Creates electrical field
 - Natural path through field

Vortex fields

- Obstacles have "currents"
- Push around obstacles

Ad Hoc Steering

1. Compute nearest approach

- Assume constant velocity
- Find time that it is closest
- Repeat for all objects

Ad Hoc Steering

1. Compute nearest approach

- Assume constant velocity
- Find time that it is closest
- Repeat for all objects

2. Find first collision

- Plug in time from last step
- See if objects collide
- Pick one with time least

Ad Hoc Steering

- 1. Compute nearest approach
 - Assume constant velocity
 - Find time that it is closest
 - Repeat for all objects
- 2. Find first collision
 - Plug in time from last step
 - See if objects collide
 - Pick one with time least
- 3. Adjust object velocity
 - Nudge from the collision
 - Determine new velocity

1. Compute relative velocity

- 1. Compute relative velocity
- 2. Normalize the vector
- 3. Compute relative speed

- 1. Compute relative velocity
- 2. Normalize the vector
- 3. Compute relative speed
- 4. Compute relative position

- 1. Compute relative velocity
- 2. Normalize the vector
- 3. Compute relative speed
- 4. Compute relative position
- 5. Project position on velocity

the gamedesigninitiative at cornell university

- 1. Compute relative velocity
- 2. Normalize the vector
- 3. Compute relative speed
- 4. Compute relative position
- 5. Project position on velocity
- 6. Get time from projection

Check For Collision

Check For Collision

- Objects != points
 - Must have size & shape
 - Collide if any overlap
- Easy if using circles
 - Line between centers
 - Get segment length *l*
 - Check if $l < r_1 + r_2$
- Find first collision!

Adjust Object Velocity

- 1. Move objects to position
- 2. Draw segment between centers
- 3. Extend segment appropriately
- 4. Adjust velocity vector

Adjust Object Velocity

- 1. Move objects to position
- 2. Draw segment between centers
- 3. Extend segment appropriately
- 4. Adjust velocity vector

Adjust Object Velocity

- No set way to adjust
 - Hence "ad hoc" steering
- Can rotate on to new line
 - Compute old magnitude
 - Compute new unit vector
 - Multiply by old magnitude
- Can project on to line
 - Start with old vector is **v**
 - Compute new unit vector **u**
 - New vector is (v•u) u

What If No Collisions?

- Go to your goal!
 - Going somewhere, right?
 - Also a velocity adjustment
- Avoid "whiplash"
 - Limit angle of change
 - "Turning radius"
- Exact method up to you

Optimizations

- Bound your search!
 - This is lots of linear algebra
 - Other object might move
 - Only move if you have to
- Bounding boxes
 - Center box on object
 - Only check objects inside box
 - Relatively quick test
- Angular cones
 - Can only turn so much
 - Limit to inside turning cone
 - Test is two dot products

Optimizations

- Bound your search!
 - This is lots of linear algebra
 - Other object might move
 - Only move if you have to

Bounding boxes

- Center box on object
- Only check objects inside box
- Relatively quick test
- Angular cones
 - Can only turn so much
 - Limit to inside turning cone
 - Test is two dot products

Optimizations

- Bound your search!
 - This is lots of linear algebra
 - Other object might move
 - Only move if you have to
- Bounding boxes
 - Center box on object
 - Only check objects inside box
 - Relatively quick test
- Angular cones
 - Can only turn so much
 - Limit to inside turning cone
 - Test is two dot products

Ad Hoc Steering: Problem

the gamedesigninitiative at cornell university

- Much more physics based
 - Goal pulls towards
 - Obstacles push away
- Create an energy field
 - $E(\mathbf{p})$ = energy field
 - $F = \nabla_{\mathbf{p}} E$
 - "Steepest decent"
- Get velocity from force
 - $\mathbf{v} = F/m$

"Solves" cluster problem

•
$$E = A_{\mathbf{g}} + \sum R_{\mathbf{q}}$$

- $A_{\mathbf{g}} = \text{attraction force}$
- R_q = repulsion force
- Gradient is linear

•
$$F = \nabla_{\mathbf{p}} A_{\mathbf{g}} + \sum_{\mathbf{q}} \nabla_{\mathbf{p}} R_{\mathbf{q}}$$

- Just need it for A_{g} , R_{q}
- Or fast approximations

Repulsion Field

- q: obstacle location
- r_0 : vehicle radius
- r_1 : obstacle radius
- s: separation factor (=1.05)
- c_0 : vehicle "charge"
- c_1 : goal "charge"
- Field computation

•
$$d = |\mathbf{q} - \mathbf{p}| - s * (r_0 + r_1)$$

$$\bullet \quad R_{\mathbf{q}} = \frac{c_0 c_1}{d}$$

Attraction Field

- k: coefficient (= 1/e)
- *b*: breaking distance (= 1)
- g: goal location
- c_0 : vehicle "charge"
- c_1 : goal "charge"

•
$$a(d) = \begin{cases} (d-b) * (\frac{-2}{b*e}) + \frac{1}{e} & \text{if } d > b \\ e^{-\frac{d^2}{b^2}} & \text{otherwise} \end{cases}$$

$$\bullet \ A_{\mathbf{g}} = -kc_0c_1a(|\mathbf{g} - \mathbf{p}|)$$

Generalizing Potential Fields

- Not limited to circles!
 - Take obstacle shape
 - Surround it by contours
 - Equidistant from shape
- Basic idea: capsules
 - "Line with radius"
 - Distance to line in R_{q}
 - Use on polygon boundary
- Not needed for assignment

Potential Fields: Problems

- Expensive!
 - Did you see an exponent?
 - Need fast approximations
 - **Idea**: Taylor polynomials
- Local minima
 - All forces add to zero
 - Goal on other side of wall
 - Why pathfinding is better
- Possibly jittery
 - Lots of overcompensation

Vortex Fields

- Like ad hoc steering
 - Move in straight line
 - If any collision, move
- Vortex tells how to move
 - Pushes object around
 - Only use nearest field
- State of the art steering
 - Used in Clancy games
- Tricker to get right

Vortex Fields

```
Vector3 VortexForce(Agent a, Obstacle o) {
   Vector3 distV = (o.getPos()—a.getPos());
   float distSq = distV.magSquare();
   if ( distSq <= o.fieldRadiusSq) {
      float cross =
        distV.cross(a.getVelocity()).getZ();
      if (cross < 0 ) {
        return turnLeft(distV);
      } else {
        return turnRight(distV);
    }
}</pre>
```

Pathfinding in Practice

- Navigation Meshes
 - Indicates walkable areas
 - 2D geometric representation
 - Connected convex shapes
 - Graph: center-to-center
- Pathfinding + Steering
 - A* search on graph
 - Only pathfind once
 - Steering node-to-node

Summary

- Steering is an alternative to pathfinding
 - Recompute velocity each round
 - Reacts well to dynamic obstacles
- Three main forms of steering

 - Potential fields
 - Vortex fields

