
CS280, Spring 2008: Prelim Solutions

The test is out of 50; the points for each question are marked. Don’t forget to put
your name and student number on each blue book that you use. You can answer the
questions in any order, but mark your work clearly. Don’t forget to show all your work.
Give us a chance to give you partial credit! You have 90 minutes. Good luck!

1. [4 points] Suppose f : A → A is defined by f(x) = 3x − 5. Is f a 1-1 and onto
(i.e., injective and surjective) if A = Z? What about if A = Q (the rational
numbers)? (If you think f is injective or surjective, explain why. If you don’t, give
a counterexample.)

Solution: f is injective in both cases: if x 6= y, then we must have 3x−5 6= 3y−5.
f is surjective if A = Q: given a rational number y, then take x = (y + 5)/3. It
is easy to see that x is rational, and f(x) = y. However, f is not surjective if the
domain is Z. There is no integer x such that 3x− 5 = 2.

2. [5 points]

(a) [1 point] What is an equivalence relation on S. (It’s enough to just list the
three properties of an equivalence relation; you don’t have to explain what
they are.)

(b) [4 points] Recall that the reverse of a relation R is {(b, a) : (a, b) ∈ R}. Let
Rr be the reverse of R. Prove that, for any relation R, R ∪Rr is symmetric.

Solution: (a) An equivalence relation is a relation the is reflexive, symmetric, and
transitive.

(b) Suppose that (x, y) ∈ R∪Rr. Then (x, y) ∈ R or (x, y) ∈ Rr. If (x, y) ∈ R, then
(y, x) ∈ Rr, so (y, x) ∈ R ∪ Rr. If (x, y) ∈ Rr, then (y, x) ∈ R, so (y, x) ∈ R ∪ Rr.
Either way, (y, x) ∈ (R ∪ Rr), so R ∪ Rr is symmetrc. To get full credit, you had
to explicitly show that if (x, y) ∈ R ∪ Rr, then so is (y, x). It wasn’t enough to
just say that because (x, y) ∈ R, we must have (y, x) ∈ Rr. (Indeed, this is not a
complete argument.)

3. [5 points] Consider the following algorithm:

Input m [m ∈ N ]
k ← m
n← 0
while k 6= 0 do

n← n+m
k ← k − 1

end
return n

1



(a) What does this algorithm compute on input m?

(b) Prove your claim in (a) by using an appropriate loop invariant and induction.
(Note that you also have to prove that the algorithm terminates.)

Solution: This algorithm computes m2 on input m. To prove this, we need an
appropriate invariant. Let P (N) be the statement “if N ≤ m + 1, then at the
beginning of the Nth iteration of the loop with input m, we have n = (N − 1)m
and k = m − (N − 1). We prove P (N) by induction for N ≥ 1. For the base
case, l = 1. At the beginning of the first iteration, we have k = m and n = m, as
desired. Suppose that P (N) holds; we prove P (N + 1). If N + 1 > k + 1, there is
nothing to prove. If N + 1 ≤ m+ 1, by the induction hypothesis, at the beginning
of the Nth iteration, k = m− (N − 1) and n = (N − 1)m. During the next loop,
k is decremented by 1 and m is added to n, so at the beginning of the (N + 1)st
iteration, we have k = m − N = m − (N + 1 − 1) and n = mN = m(N + 1 − 1),
as desired. It follows from the induction that at the beginning of the (m + 1)st
iteration of the loop, we have k = 0 and n = m2. It follows that, at this point,
the program terminates and outputs m2. Thus, we have proved both that the
program terminates and that it computes m2. Some common mistakes included
people trying P (m) = m2 rather than inducting on number of iterations with m
fixed Don’t forget that when you’re looking for a loop invariant to try to prove a
program correct, the m in P (m) is almost always the number of times through the
loop.

4. [3 points] Explain carefully what the bug is in the following argument:

We prove by strong induction that all orders of fish for at least 10 pounds
of fish can be filled using only 5-pound fish. Let P (n) be the statement
that an order of fish for n pounds of fish can be filled using only 5-pound
fish. We prove P (n) for n ≥ 10. Clearly P (10) is true: an order for
10 pounds of fish can be proved using two 5-pound fish. Suppose that
P (10), . . . , P (n) are all true. We prove P (n+ 1). We want to show that
we can fill an order for n+ 1 pounds of fish using 5-pound fish, if n ≥ 10.
By the induction hypothesis, we can fill an order for n − 4 pounds of
fish using 5-pound fish. Add one more 5-pound fish, and we’ve filled the
order for n+ 1 pounds. This completes the induction argument.

Solution: If n − 4 < 10, then we can’t apply the induction hypothesis, because
n− 4 is not between 10 and n. In particular, the argument fails if n = 11, because
n − 4 = 7. Note that it wasn’t enough to say that the argument doesn’t work if
n = 11. You had to explain why it didn’t work.

5. Suppose the sets P0, P1, P2, . . . of bit strings (that is, strings of 0s and 1s) are defined
inductively by taking P0 = {λ} (where λ denotes the empty string, which is taken
to have length 0) and Pn+1 = Pn ∪ {x00, x01, x10, x11 : x ∈ Pn}. Let P = ∪∞

k=0Pk.
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Let Q be the smallest set such that

• λ ∈ Q;

• if x ∈ Q, then x00, x01, x10, x11 ∈ Q.

(a) [5 points] Prove that Pn consists of all strings of even length at most 2n.

(b) [6 points] Prove that P = Q.

Solution: For part (a), let Q(n) be the statement “Pn consists of all strings of
length 2k for k ≤ n”. We prove Q(n) for n ≥ 0 by induction. Q(0) says that P0

consists of all strings of length 0. which is clearly true, since λ is the only string
of length 0, and P0 = {λ}. Suppose that Q(n) is true. To prove Q(n + 1), note
that Pn+1 = Pn ∪ {x11, x01, x10, x11 : x ∈ Pn}. If x ∈ Pn, then either |x| < 2n, in
which case it follows from the induction assumption that {x00, x01, x10, x11} ⊆ Pn

(since Pn consists of all strings of length 2k for k ≤ n) or |x| = 2n, in which case
{x00, x01, x10, x11} ∩ Pn = ∅ (since each of x00, x01, x10, and x11 have length
2n + 2. Since Pn includes all strings of length 2n, it follows that Pn+1 − Pn =
{x00, x01, x10, x11 : |x| = 2n}. Thus, Pn+1 − Pn consists of all strings of length
2(n+ 2) (since every string of length 2n+ 2 has the form x00, x01, x10, or x11 for
some string x with |x| = 2n. It follows that Pn+1 consists of all strings of length
2k for k ≤ n + 1. This completes the induction. Note that many people proved
that all the strings in Pn+1 were of even length, and that they all had length at
most 2n+2, but forgot to prove that Pn+1 consisted of all strings of length at most
2n+2. You lost one point if you didn’t show this. (That’s what the “ALL” on some
homeworks means.) A few people were confused about the difference between |Pn|
(which is the number of elements in Pn, which can be shown to be (4n+1 − 1)/3,
and the lengths of the strings in Pn.

For part (b), we show that P ⊆ Q and Q ⊆ P . To show that Q ⊆ P , it suffices
to show that P satisfies the properties that characterize Q. Clearly λ ∈ P0 ⊆ P .
Moreover, if x ∈ P , then x ∈ Pn for some n, so {x00, x01, x10, x11} ⊆ P . Since Q
is the smallest set that satisfies these two properties, we must have Q ⊆ P . (If you
just said Q ⊆ P without saying why—namely, that Q is the smallest with these
properties—you lost a point.)

To show that P ⊆ Q, it suffices to show that Pk ⊆ Q for all k, since P = ∪k=0∞Pk.
We do this by induction. Let R(n) be the statement “Pn ⊆ Q”. Clearly P0 ⊆ Q,
since, by assumption λ ∈ Q. Suppose that Pn ⊆ Q. To see that Pn+1 ⊆ Q, suppose
that x ∈ Pn+1. Either x ∈ Pn, in which case x ∈ Q by the induction assumption,
or there exists x′ ∈ Pn such that either x = x′00, x = x′01, x = x′10, or x = x′00.
By the induction hypothesis, x′ ∈ Q. By the second clause in the characterization
of Q, x ∈ Q. Thus, Pn+1 ⊆ Q.
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6. [4 points] Bob and Alice want to choose a secret key that they can use for cryp-
tography, but all that they have is a bugged phone line, so an eavesdropper can
listen to all their messages. Bob proposes that they each choose a secret number.
Call Alice’s number a and Bob’s number b. They also choose, over the telephone
number, a prime p and another number q. (Don’t worry about exactly how they
choose a, b, p, and q. All that matters is that they discuss p and q over the tele-
phone line, so that someone bugging the line will hear what they are.) Bob will
then send Alice bq mod p, and Alice will send Bob aq mod p. Their key (which they
will keep secret) is then abq mod p. Note that they can both compute abq mod p.
Alice hears bq mod p from Bob, and knows a (that’s her secret) so she can compute
abq mod p. Similarly, Bob knows b and aq mod p, so can compute abq mod p. As
Bob explains, their wiretapper will know p, q, aq mod p, and bq mod p, but will not
know a or b, so their key will be safe (that is, despite hearing all their telephone
discussions, an eavesdropper will not be able to figure out abq mod p.

Is Bob right? Explain why or why not.

Solution: Bob is wrong. Suppose that aq mod p = k1 and bq mod p = k2.
Knowing k1,, k2, q, and p, an eavesdropper can “solve” aq ≡ k1 (mod p) and
bq ≡ k2 (mod p). That is, although the eavesdropper cannot compute a and b ex-
actly, as we showed in class, she can compute a mod p and b mod p. That enough
for her to compute abq mod p.

This argument is an indication of how subtle it can be to prove cryptographic
protocols correct. Here’s a variant of Bob’s suggestion that is believed to be safe:
Alice sends Bob qa mod p and Bob sends Alice qb mod p. They can both then
compute qab mod p and use that for their secret key. The effectiveness of this
method depends on the assumption (believed to be true) that computing a mod p
is hard, given p, q and qa mod p.

7. [5 points] Use the Extended Euclid’s algorithm to find s and t such that 42s+47t =
1. (You must show the steps of the algorithm. It is not enough to just write down
s and t.)

Solution: We first do the gcd computation, then work backwards to find s and t.
gcd(42, 47) = gcd(42, 5) = gcd(5, 2) = gcd(2, 1) = 1. Now working backwards,

1 = 2− 1
= 2− (5− 2× 2)
= 3× 2− 5
= 3× (42− 8× 5)− 5
= 3× 42− 25× 5
= 3× 42− 25× (47− 42)
= 28× 42− 25× 47
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8. [4 points] Show that if n is a composite and gcd(n, b) > 1 then bk 6≡ 1 (mod n) if
k ≥ 1. Hint: what can you say if bk ≡ 1 (mod n)?

Solution: Suppose that gcd(n, b) = q > 1. If bk ≡ 1 (mod n), then n | (bk − 1).
Since q | n, by the transitivity of divisibility, q | (bk − 1). Since q | b, we must
have q | bk. It follows that q | 1, contradicting the assumption that q 6= 1. A
few comments on solutions: Some people used the “rule” that if a | (b − c), then
a | b and a | c. This is false (for example, 3 | (4 − 4), but it is not the case that
3 | 4). Others used the rule that if bk ≡ 1 (mod n), then bk must be relatively
prime to n. This is true, but for full credit, you needed to prove it. Some people
said that if bk ≡ 1 (mod n), then b ≡ 1 (mod n). This is false (32 ≡ 1 (mod 8), but
3 6 equiv1 (mod 8)). Finally, some people tried to apply Fermat’s Little Theorem.
This can’t be applied here, since n is not necessarily prime.

9. [4 points] Recall that the ISBN number for a book is given by 10 numbers a1, . . . , a10
where a1, . . . , a9 are in the range 0–9 (inclusive) and a10 is in the range 0-10 (in
practice, “10” is represented by an x) such that

(1× a1) + (2× a2) + · · · (9× a9) + (10× a10) ≡ 0 (mod 11). (1)

Show that ISBN numbers can detect errors in single digits. More precisely, suppose
that the ISBN number of a book is supposed to be a1, . . . , a10 (so that these numbers
satisfy Equation (??)), and a3 is mistyped as a′3. Show that a1, a2, a

′
3, a4, . . . , a10

can’t be a valid ISBN number. That is, show that it cannot satisfy Equation (??).
(The same argument works if any other digit is mistyped, of course.)

Solution: If a1, a2, a
′
3, a4, . . . , a10 is a valid ISBN number, then

1× a1 + 2× a2 + 3× a′3 + · · ·+ 9× a0 + 10× a10 ≡ 0 (mod 11).

Since a1, a2, . . . , a10 is also valid, we must have

1× a1 + 2× a2 + 3× a3 + · · ·+ 9× a0 + 10× a10 ≡ 0 (mod 11).

Thus,

1×a1+2×a2+3×a′3+· · ·+9×a0+10×a10 ≡ 1×a1+2×a2+3×a3+· · ·+9×a0+10×a10 (mod 11).

It follows that 3(a′3 − a3) ≡ 0 (mod 11). Thus, 11 | 3(a′3 − a3). Since 3 and
11 are relatively prime, this means that 11 | (a′3 − a3). But since a′3 and a3 are
both between 0 and 9, a′3 − a3 is between −9 and 9. The only number in that
range divisible by 11 is 0. Thus, a′3 = a3, contradicting the assumption that a3
was mistyped. Some people tried to make essentially this argument without using
formulas, and often lost a point or so for being a bit too fuzzy.
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10. [5 points] Use the Chinese Remainder Theorem to find all integers x that satisfy
the following system of congruences:

x ≡ 2 (mod 3)
x ≡ 1 (mod 4)
x ≡ 2 (mod 7)

Solution: First find y1 such that y1 ≡ 2 (mod 3), y1 ≡ 0 (mod 4), and y1 ≡=
0 (mod 7). As shown in class, y1 must have the form 28y′1. Since 28 ≡ 1 (mod 3),
it’s easy to see that we can take y′1 = 2, so y1 = 56.

Next find y2 such that y2 ≡ 0 (mod 3), y2 ≡ 1 (mod 4), and y2 ≡= 0 (mod 7).
Thus, y2 must have the form 21y′2. Since 21 ≡ 1 (mod 4), we can take y′2 = 1 and
y2 = 21.

Finally, we need to find y3 such that y3 ≡ 0 (mod 3), y3 ≡ 0 (mod 4), and y3 ≡=
2 (mod 7). y3 must have the form 12y′3. Since 12 ≡ 5 (mod 7), and 6 × 5 = 30 ≡
2 (mod 7), we can take y′3 = 6 and y3 = 72.

Finally, we can take x = y1 + y2 + y3 = 56 + 21 + 72 = 149. This is one solution,
but the problem asks you to give them all. If x is a solution, then all solutions
have the form x+ kM , where M in this case is 3× 4× 7 = 84. Thus, the set of all
solutions is {149 + 84k : k ∈ Z}.
[Grading: you got 2 points if you guessed the answer right but the work didn’t
reflect a knowledge of the Chinese Remainder Theorem. If you found a solution
but did not give all the solutions, you got 5.]
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