
Discrete Structures Prelim 2 sample questions— Solutions
CS2800 Questions selected for spring 2017

1 Structural induction, finite automata, regular expressions

1. We define a set S of functions from Z to Z inductively as follows:

Rule 1. For any n ∈ Z, the translation (or offset) function tn : x 7→ x+ n is in S.

Rule 2. For any k 6= 0 ∈ Z, the scaling function rk : x 7→ kx is in S.

Rule 3. If f and g are elements of S, then the composition f ◦ g ∈ S.

Rule 4. If f ∈ S and f has a right inverse g, then g is also in S.

In other words, S consists of functions that translate and scale integers, and compositions and right
inverses thereof.

Note: This semester, we made a bigger distinction between the elements of an inductively
defined set and the meaning of an inductively defined set. We probably would have phrased this
question as follows: Let S be given by

s ∈ S ::= tn | rk | s1 ◦ s2 | rinv s

and inductively, let the function defined by s (written Fs : Z) be given by the rules Ftn(x) ::=
x+ n, Frk(x) ::= ks, Fs1◦s2(x) ::= Fs1 ◦ Fs2 and let Frinv s ::= g where g is a right inverse of
Fs.

(a) [1 point] Show that the function f : x 7→ 3x+ 17 is in S.

Solution By rule 1, the function t17 : x 7→ x + 17 is in S, and by rule 2, r3 : x 7→ 3x is in S. By
rule 3, therefore, t17 ◦ r3 : x 7→ 3x+ 17 is in S.

(b) Use structural induction to prove that for all f ∈ S, f is injective. You may use without proof the
fact that the composition of injective functions is injective.

Solution We must show that all functions formed with each of the rules are injective. Let P (s)
be the statement s is injective.

P (tk) holds, because tk has a two sided inverse t−k, and is therefore injective.

P (rk) holds, because we required that k 6= 0. Therefore, if kx1 = kx2, we can cancel k to find
x1 = x2.

P (f ◦ g) holds, assuming P (f) and P (g), because the composition of injections is an injection.

If g is the right inverse of f , then P (g) holds, because g has a left-inverse (namely f) and is therefore
injective.

(c) Give a surjection φ from S to Z (proof of surjectivity not necessary). Remember that this surjection
must map a function to an integer, and for every integer there must be a function that maps to it.

1

Solution Let φ(s) ::= s(0). This is a surjection, because tn(0) = 0 + n = n, so for any n there
exists s ∈ S (namely tn) with φ(s) = n.

2. Seeking to avoid the limitations of regular expressions, a student designs a set S of “super expressions”.
Just as with regular expressions, each super expression s ∈ S matches a set of strings, denoted by L(s).
The set S and the function L are defined inductively as follows:

• A “character class” is denoted [a1a2 . . . an] (where the ai are single characters, i.e. elements of Σ).
It matches a single character which is any of the ai. For example, [012] matches “0”, “1”, and “2”,
but does not match “12”.

Formally, [a1a2 . . . an] ∈ S and L([a1a2 . . . an]) = {a1, a2, . . . , an}.

• If s ∈ S, a “positive repetition” of s is denoted s+. It matches one or more strings, each of which is
matched by s. For example, [45]+ matches “4”, “54”, and “555” but does not match ε.

Formally, s+ ∈ S and L(s+) = {x1x2 · · ·xn | n ≥ 1 and xi ∈ L(s)}.

• If s1 ∈ S and s2 ∈ S then the “difference” of s1 and s2 is denoted by s1 \ s2. It matches all strings
that s1 matches but s2 does not. For example, ([123]+)\ [123] matches “1322” and “11” but not “1”,
“2”, or “3”.

Formally, s1 \ s2 ∈ S and L(s1 \ s2) = L(s1) \ L(s2).

• If s1 ∈ S and s2 ∈ S then the “concatenation” of s1 and s2 is denoted by s1s2. It matches any string
that is formed by concatenating a string matched by s1 with a string matched by s2. For example
[012][34] matches “03” and “24” but not “0” or “32”.

Formally, s1s2 ∈ S and L(s1s2) = {xy | x ∈ L(s1) and y ∈ L(s2)}.

(a) Let Σ = {0, 1, 2}. Let s be the super expression “([01][12])+ \ ([012][012])”. Write a (normal) regular
expression r such that L(r) = L(s).

Solution To explain the answer, I’ll refer to a string matching [01][12] as a unit. We must match
strings containing two or more units. A unit is matched by the (normal) regular expression (0 +
1)(1 + 2). Therefore, two or more units is matched by (0 + 1)(1 + 2)(0 + 1)(1 + 2)((0 + 1)(1 + 2))∗.

(b) Prove by structural induction that every super expression s ∈ S has an equivalent regular expression.
You may use without proof the fact that the union, intersection, and complement of regular languages
are regular.

Solution Let P (s) be the statement “there exists r ∈ RE such that L(r) = L(s).”

We must show P ([a1 . . . an]), P (s+) (assuming P (s)), P (s1 \ s2) (assuming P (s1) and P (s2)), and
P (s1s2) (again, assuming P (s1) ad P (s2))

P ([a1 . . . an]) holds, because L([a1 . . . an]) = L(a1 + a2 + · · ·+ an).

P (s1 \ s2) holds; we assume inductively that s1 and s2 are regular. We know that L(s1 \ s2) =
L(s1) \ L(s2) = L(s1) ∩ L(s2), which is regular, because the intersection and complement of regular
languages is regular.

Finally, we must show that L(s1s2) is regular. We inductively assume that s1 and s2 are regular.
Therefore, there exist r1 and r2 with L(r1) = L(s1) and L(r2) = L(s2). By definition, this shows
that L(r1r2) = L(s1s2), so s1s2 is regular.

3. Given DFAs M1 = (Q1,Σ, δ1, q01, F1) and M2 = (Q2,Σ, δ2, q02, F2), we can construct a machine M12 with
L(M12) = L(M1) ∩ L(M2) as follows:

• Let Q = Q1 ×Q2 = the set of all ordered pairs (q1, q2), where q1 ∈ Q1 and q2 ∈ Q2.

• Let q0 ∈ Q = (q01, q02).

2

• Let F = F1 × F2 = {(q1, q2) | q1 ∈ F1 and q2 ∈ F2}.

• Let δ12((q1, q2), a) = (δ1(q1, a), δ2(q2, a)).

• Let M12 = (Q,Σ, δ12, q0, F).

Use structural induction to prove that for all x ∈ Σ∗, δ̂12((q1, q2), x) =
(
δ̂1(q1, x), δ̂2(q2, x)

)
.

Solution The main challenge here is wading through the notational jungle to understand what the
problem actually says. Once you’ve done this, the proof is short and straightforward. Here it is in all its
glory:

We will prove the result by structural induction on x, as suggested. Both the set of strings Σ∗

and the extended transition function δ̂ are defined recursively (see the definitions at the end).
The base case for x is the empty string ε. We can simply read off the corresponding line in the
definition of δ̂, which tells us that

• δ̂1(q1, ε) = q1,

• δ̂2(q2, ε) = q2, and

• δ̂12((q1, q2), ε) = (q1, q2).

Hence δ̂12((q1, q2), ε) = (q1, q2) =
(
δ̂1(q1, ε), δ̂2(q2, ε)

)
, so the statement is true in the base case.

Now assume the statement is true for some string x, and consider the “next larger” string xa.

Again reading off the appropriate line in the definition of δ̂, we know that

• δ̂1(q1, xa) = δ1(δ̂1(q1, x), a), and

• δ̂2(q2, xa) = δ2(δ̂2(q2, x), a)

What is δ̂12((q1, q2), xa)? Well, we also have

δ̂12((q1, q2), xa) = δ12(δ̂12((q1, q2), x), a) (definition of δ̂12)

= δ12

((
δ̂1(q1, x), δ̂2(q2, x)

)
, a
)

(inductive hypothesis)

=
(
δ1

(
δ̂1(q1, x), a

)
, δ2

(
δ̂2(q2, x), a

))
(definition of δ12)

=
(
δ̂1(q1, xa), δ̂2(q2, xa)

)
(definition of δ̂1, δ̂2)

This proves the statement for all strings x ∈ Σ∗ by (structural) induction.

4. (a) Draw a finite automaton (DFA, NFA or ε-NFA) with alphabet {0, 1} to recognize the language

{x ∈ {0, 1}∗ | x contains the substring 010}

Solution An NFA is probably the easiest to construct.

q0start q1 q2 q3

0, 1

0 1 0

0, 1

(b) Draw a finite automaton (DFA, NFA or ε-NFA) with alphabet {a, b} to recognize the same language
as the regular expression (ab|ba)∗.

3

Solution We can blindly apply the regex → ε-NFA construction from the proof of Kleene’s Theo-
rem to get something like this:

q11 q12 q13 q14

q0start q1 qf

q21 q22 q23 q24

ε

ε

ε

a ε b

b ε a

ε

ε

ε

ε

ε

Of course this is a bit messy, a more compressed version might look like this:

q11 q12 q14

q1start

q21 q22 q24

ε

ε

a b

b a

ε

ε

5. Prove that L = {0n10n | n ∈ N} is not regular.

Solution Suppose that this language is accepted by some deterministic finite automaton with N states.
Consider the string x = 0n10n. Since x is in the language and |x| ≥ N , by the Pumping Lemma, there
exist strings u, v, and w such that x = uvw, |v| ≥ 1, |uv| ≤ N , and M accepts uviw for all i > 0. Since
|uv| ≤ N , it must be the case that uv is a string of 0’s, and that w contains the 1 in 0N10N . Thus, if
i > 1, uviw has more than N 0s to the left of the 1 and only N 0s to the right of the 1, and thus is not
in the language. This contradicts the assumption that the language is accepted by M (since M accepts
a string not in the language).

6. Let r be a regular expression. Show that there exists a regular expression r′ with L(r′) = L(r) (the
complement of L(r)). If your proof involves the construction of a regular expression or automaton, you
must prove that the language of the regular expression/automaton is what you claim it is (using the

4

definitions).

Solution First, note that L(r) is a language, which means that it’s a set of strings. So its complement
consists of all the strings in L(r) that are not in Σ∗. (Many of you took “complement” to mean the result
of switching the 0s and 1s in the strings in L(r). This is not what complement means in this context;
moreover, this approach fails if Σ 6= {0, 1}. Unfortunately, you typically got 0, 1, or 2 out of 6 if you did
this, depending on what else you did.)

By Kleene’s theorem, there is a DFA M = (Q,Σ, δ, q0, F) with L(M) = L(R). We can form a new
automaton M ′ by flipping the accept and reject states of M : M ′ = (Q,Σ, δ, q0, Q \ F).

I claim L(M ′) = L(M). Indeed,

x ∈ L(M ′) ⇐⇒ δ̂(q0, x) ∈ Q \ F

⇐⇒ δ̂(q0, x) /∈ F
⇐⇒ x /∈ L(M)

(You typically lost 1 point if you didn’t give a proof.)

Applying Kleene’s theorem again tells us that since there is a DFA with L(M ′) = L(r) there must be a
regular expression r′ with L(r′) = L(r).

7. Build a deterministic finite automaton that recognizes the set of strings of 0’s and 1’s, that only contain
a single 0 (and any number of 1’s). Describe the set of strings that lead to each state.

Solution

q0start q1 q2

1

0

1

0

0,1

The strings leading to qi contain i 0’s.

8. Given a string x, we can define the “character doubling” of x to be x with every character doubled: for
example cd(abc) = aabbcc. Formally, cd(ε) = ε, and cd(xa) = cd(x)aa. We can then define the “character
doubling” of a language L to be the set of all strings formed by doubling the characters of strings in L;
formally cd(L) = {cd(x) | x ∈ L}.

Given a DFA M = (Q,Σ, δ, q0, F), we can construct a new DFA Mcd that recognizes cd(L(M)) by adding
a new state q′qa to the middle of every transition from q on character a:

q1 q2 becomes q1 q′q1a q2
a a a

(a) Formally describe the components (Qcd,Σcd, δcd, q0cd, Fcd) of Mcd in terms of the components of M .
Be sure to describe δcd on all inputs (you may need to add one or more additional states).

Solution Qcd = Q ∪ {q′qa | q ∈ Q, a ∈ A} ∪ {X}

δcd : (q, a) 7→ q′qa; δcd : (q′qa, a) 7→ δ(q, a); δcd : (q′qa, b) 7→ X if a 6= b, and δcd : (X, a) 7→ X.

The remaining components are unchanged: Σcd = Σ, q0cd = q0, and Fcd = F .

(b) Use structural induction on x to prove that for all x, δ̂(q0, x) = δ̂cd(q0cd, cd(x)).

5

Solution Let P (x) be the statement that δ̂(q0, x) = δ̂cd(q0, cd(x)). I will prove ∀x, P (x) by struc-
tural induction.

To show P (ε), note that δ̂(q0, ε) = q0. Moreover, cd(ε) = ε, so δ̂cd(q0, cd(ε)) = δ̂cd(q0, ε) = q0 =

δ̂(q0, ε), as required.

To show P (xa), we assume the inductive hypothesis P (x). we compute:

δ̂cd(q0, cd(xa)) = δ̂cd(q0, cd(x)aa) by definition of cd

= δcd(δcd(δ̂cd(q0, cd(x)), a), a) by definition of δ̂cd

= δcd(δcd(δ̂(q0, x), a), a) by definition of δ̂cd

= δcd(q(δ̂(q0,x))a, a) by definition of δcd

= δ(δ̂(q0, x), a) by definition of δcd

= δ̂(q0, xa) by definition of δ̂

9. We can also define the “string doubling” of x to be xx. For example, sd(abc) = abcabc. Show that the set
of regular languages is not closed under string doubling. In other words, give a regular language L and
prove that sd(L) = {sd(x) | x ∈ L} is not regular.

You can use any theorem proved in class to help prove this result.

Solution Let L = 0∗1. Clearly L is regular. Moreover, sd(L) = {0n10n1 | n ∈ N}.

This language is not regular. To see this, assume for the sake of contradiction that it is. Then there exists
some natural number m as in the pumping lemma. Let x = 0m10m1. Clearly x ∈ sd(L), and |x| ≥ m,
so we can split x into u, v, and w, as in the pumping lemma. We know that |uv| ≤ n, so v can only
contain 0’s. Then x′ = uv2w contains more 0’s before the first 1 than after, and thus x′ /∈ sd(L). But the
pumping lemma says that x′ ∈ sd(L); this is a contradiction, and thus sd(L) is not regular.

10. Happy Cat has been shown the following proof, and has promptly turned into Grumpy Cat. Briefly but
clearly identify the error which has induced grumpiness.

To prove: The language of the regular expression 0∗1∗ is, in fact, not DFA-recognizable.

Proof. Let L be the language of 0∗1∗. Assume there is some DFA M with n states that recognizes
L. Let x = 0n−111. Clearly, x ∈ L and |x| ≥ n. Therefore according to the Pumping Lemma,
we can split x into three parts u, v and w, such that |uv| ≤ n, |v| ≥ 1, and uviw ∈ L for all
natural numbers i. Let |v| = n. Since |uv| ≤ n, it must be the case that u = ε, and v = 0n−11.
Then uv2w = 0n−110n−111, which is clearly not in L. This contradicts our assumption that
there is a DFA which recognizes the language.

Solution The pumping lemma says there exists some v, but we have chosen a specific v. It may be that
the pumping lemma gives some other v (such as 0).

2 Probability problems

1. (a) Give the definition of variance in terms of expectation.

6

Solution
Var(X) = E((X − E(X))2)

I would also accept Var(X) = E(X2)− E2(X).

(b) Let X and Y be random variables with E(X) = E(Y) = 0. Prove that Var(X+Y) = Var(X)+Var(Y).
Make (and clearly state) additional assumptions if necessary.

Solution We must require that X and Y are independent. Therefore E(XY) = 0. Then we have

Var(X + Y) = E
(
(X + Y − E(X + Y))2

)
by definition

= E
(
(X + Y)2

)
since E(X + Y) = E(X) + E(Y) = 0

= E(X2 + 2XY + Y 2) arithmetic

= E(X2) + 2E(XY) + E(Y 2) expectation of the sum is sum of expectations

= E(X2) + E(Y 2) since E(XY) = 0 (independence)

= Var(X) + Var(Y) by definition and fact that E(X) = E(Y) = 0

2. (a) The average human height is 5 feet and 4 inches, and the variance is 2 squared inches. How large a
sample must I take so that my estimate of the average will (with 90% probability) be correct to within
a half inch?

Solution Let H denote the ”height” random variable, and let E be the estimated average.

The law of large numbers states that P(|E − E(H)| ≥ ε) ≤ σ2(H)/nε2. Plugging in a half inch for
epsilon and solving for n, we see that if n ≥ 2/(0.25 · 0.1) that the probability of being incorrect is
no larger than 0.1.

(b) A certain high school is divided into two teams: 35% of the students are “beliebers”, and the remaining
65% are “directioners”.

90% of the songs on a belieber’s playlist will be Justin Bieber songs, while the other 10% will be by
One Direction. Directioners are a bit more broad-minded: 80% of their songs will be One Direction
songs, while the remaining 20% will be Justin Bieber songs.

A student is selected at random, and a random song is selected from their playlist. It turns out to
be ”Baby” by Justin Bieber. What is the probability that the student was a directioner?

Solution Let D be the event that the student is a directioner, and let B be the event that the
student is a belieber. Let SD be the event that the selected song was a One Direction song, and SB
be the event that the selected song was a Justin Bieber song. We are given

• P (B) = 35%

• P (D) = 65%

• P (SD|D) = 80%

• P (SD|B) = 10%

• P (SB |D) = 20%

• P (SB |B) = 90%

7

We wish to find P (D|SB). The correct answer is given by Bayes’ rule:

P (D|SB) =
P (SB |D)P (D)

P (SB)
=

P (SB |D)P (D)

P (SB |D)P (D) + P (SB |B)P (B)
=

.2 · .65

.2 · .65 + .9 · .35

3. Suppose that a coin has probability .6 of landing heads. You flip it 100 times. The coin flips are all
mutually independent.

(a) What is the expected number of heads?

Solution Let Xi be the outcome of the ith coin toss; Xi = 1 if the ith coin toss lands heads and
0 otherwise. The total number of heads is Y = X1 + · · · + X100. We are interested in E(Y). By
linearity, E(Y) = E(X1) + · · ·+ E(X100) = 100(.6) = 60.

(b) What upper bound does Markov’s Theorem give for the probability that the number of heads is at
least 80?

Solution Markov’s Theorem says that Pr(Y ≥ 80) ≤ E(Y)/80 = 60/80 = 3/4.

(c) What is the variance of the number of heads for a single toss? Calculate the variance using either
of the equivalent definitions of variance.

Solution Let Xi be an indicator variable that is 1 is the ith toss is heads, and 0 otherwise. We
are given P (Xi = 1) = 0.6. The expectation of Xi is 0.6 · 1 + 0.4 · 0 = 0.6. Note that X2

i = Xi, so
E(X2

i) = 0.6 as well. Therefore V ar(Xi) = E(Xi)
2 − E(Xi)

2 = 0.6− 0.36 = 0.24.

(d) What is the variance of the number of heads for 100 tosses? You may use the fact that if X1, . . . , Xn

are mutually independent, then Var(
∑
Xi) =

∑
Var(Xi); you don’t need to prove this.

Solution V ar(Y) = V ar(X1)+· · ·+V ar(X100). Since V ar(Xi) = .24 for i = 1, . . . , 100, V ar(Y) =
100× .24 = 24.

(e) What upper bound does Chebyshev’s Theorem give for the probability that the number of heads is
either less than 40 or greater than 80?

Solution By Chebyshev’s Theorem. Pr(|Y − E(Y)| ≥ 20) ≤ Var(Y)/400. Since E(Y) = 60,
Pr(Y ≥ 80 ∪ Y ≤ 40) ≤ 24/400 = .06.

8

