
Discrete Structures Prelim 2 sample questions— Solutions
CS2800 Questions selected for fall 2017

1 Functions, relations, and infinite cardinality

1. True/false. For each of the following statements, indicate whether the statement is true or false. Give a
one or two sentence explanation for your answer.

(a) The relation ≤ is an equivalence relation

Solution False. It is not symmetric, because (for example) 1 ≤ 2 but 2 6≤ 1.

(b) The set of real numbers (R) is countable.

Solution False. We proved this in class using diagonalization.

(c) The set of rational numbers (Q) is countable.

Solution True. We proved this in class by giving a procedure for listing all of the rational numbers
(by putting them in a table and traversing the diagonals of the table).

(d) If there is a bijection from Q to X then X is countable.

Solution True. We know that |Q| = |N|. If there is a bijection from Q→ X, then |Q| = |X|. This
means |X| = |N|, so X is countable.

(e) Recall that [X → Y ] denotes the set of functions with domain X and codomain Y . Let f : 2S →
[S → {0, 1}] be given by f(X) ::= h where h : S → {0, 1} is given by h(s) ::= 0. f is injective.

Solution False. f always returns the same thing, so it can’t be one to one. For example, choose
any two different subsets X1 and X2 of S; then f(X1) = h = f(X2).

(f) f as just defined is surjective.

Solution False. Choose any function h′ : S → {0, 1} other than h. Since f only outputs h, it
never outputs h′.

(g) If a function has a right inverse, then the right inverse is unique.

Solution False. Let f : {0, 1, 2} → {a, b} be given by f(0) ::= a, f(1) ::= a and f(2) ::= b. Then
g1 : {a, b} given by g1(a) ::= 0 and g1(b) ::= 2 is a right inverse, but so is g2 given by g2(a) ::= 1 and
g2(b) ::= 2.

2. Complete the following diagonalization proof:

Claim: X = [N→ N] is uncountable.

Proof: We prove this claim by contradiction. Assume that X is countable. Then there exists a function
F : FILL IN that is FILL IN.

Write f0 = F (0), f1 = F (1), and so on. We can write the elements of X in a table:
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0 1 2 · · ·
f0 f0(0) f0(1) f0(2) · · ·
f1 f1(0) f1(1) f1(2) · · ·
...

...
...

. . .

Let fD : FILL IN be given by fD : x 7→ FILL IN

Then FILL IN

This is a contradiction because FILL IN.

Solution Claim: X = [N→ N] is uncountable.

Proof: We prove this claim by contradiction. Assume that X is countable. Then there exists a function
F : N→ X that is surjective.

Write f0 = F (0), f1 = F (1), and so on. We can write the elements of X in a table:

0 1 2 · · ·
f0 f0(0) f0(1) f0(2) · · ·
f1 f1(0) f1(1) f1(2) · · ·
...

...
...

. . .

Let fD : N→ N be given by fD : x 7→ 1 + fx(x)

Then fD is not in the table, because for any i, it differs from fi on input i.

This is a contradiction because we assumed F was surjective.

3. Which of the following sets are countably infinite and which are not countably infinite? Give a one to five
sentence justification for your answer.

(a) The set Σ∗ containing all finite length strings of 0’s and 1’s.

Solution This set is countable. You can list all strings of length 0, then all strings of length one,
then all strings of length 2, and so on.

(b) The set 2N containing all sets of natural numbers.

Solution This set is not countable. If it were, we could put all of the sets in a table:

0 1 2 · · ·
S1 0 ∈ S1 /∈ ∈ · · ·
S2 /∈ /∈ /∈ · · ·
S3 ∈ /∈ ∈ · · ·

We can then construct the set SD by swapping everything on the diagonal (SD = {i | i /∈ Si}).
Then SD 6= Sk for any k, because k ∈ SD if and only if k /∈ Sk. Thus SD is not in the table, which
contradicts the fact that the table contained all sets.

(c) The set N× N containing all pairs of natural numbers.

Solution This set is countable. You can put all of the pairs in a table, and then map the natural
numbers to the pairs by tracing diagonals of the table.

(d) The set [N→ {0, 1}] containing all functions from N to {0, 1}.
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Solution This set is not countable. There is a bijection between [N → {0, 1}] and 2N, and we
showed above that 2N is uncountable. Alternatively, you can diagonalize directly using the function
f : n 7→ fn(n) + 1 or similar.

Be sure to include enough detail:

• If listing elements, be sure to clearly state how you are listing them;

• If diagonalizing, be sure it is clear what your diagonal construction is;

• If providing a function, make sure it is clear what the output is on a given input.

4. For any function f : A→ B and a set C ⊆ A, define f(C) = {f(x) | x ∈ C}. That is, f(C) is the set of
images of elements of C. Prove that if f is injective, then f(C1∩C2) = f(C1)∩f(C2) for all C1, C2 ⊆ A.

(Hint: one way to prove this is from the definition of set equality: A = B iff A ⊆ B and B ⊆ A.)

Solution Choose an arbitrary b ∈ f(C1∩C2). We wish to show x ∈ f(C1)∩f(C2). Since b ∈ f(C1∩C2),
there must exist some a ∈ C1∩C2 with f(a) = b. Since a ∈ C1∩C2, we have a ∈ C1 so b = f(a) ∈ f(C1);
similarly, b ∈ f(C2). Therefore, b ∈ f(C1) ∩ f(C2).

Conversely, choose an arbitrary b ∈ f(C1) ∩ f(C2). We want to show b ∈ f(C1 ∩ C2). Now, b = f(a1)
for some a1 ∈ C1, and b = f(a2) for some a2 ∈ C2. Since f is injective, a1 = a2, so a1 is also in C2.
Therefore, a1 ∈ C1 ∩ C2 so b = f(a1) ∈ f(C1 ∩ C2) as required.

5. (a) Write the definition of “f : A→ B is injective” using formal notation (∀, ∃, “and”, “or”, “if . . . then
. . . ”, =, 6=, . . . ).

Solution ∀x1, x2 ∈ A if f(x1) = f(x2) then x1 = x2

(b) Similarly, write down the definition of “f : A→ B is surjective”.

Solution ∀b ∈ B, ∃a ∈ A, f(a) = b.

(c) Write down the definition of “A is countable”. You may write “f is surjective” or “f is injective”
in your expression.

Solution ∃f : N→ A such that f is surjective.

6. Recall that the composition of two functions f : B → C and g : A → B is the function f ◦ g : A → C
defined as (f ◦ g)(x) = f(g(x)). Prove that if f and g are both injective, then f ◦ g is injective.

Solution Assume that f and g are injective, and assume that (f ◦ g)(a1) = (f ◦ g)(a2). By definition,
we have f(g(a1)) = f(g(a2)). Since f is injective, we conclude g(a1) = g(a2); since g is injective, we
conclude a1 = a2.

7. For each of the following functions, indicate whether the function f is injective, whether it is surjective,
and whether it is bijective. Give a one sentence explanation for each answer.

(a) f : N→ N given by f : x→ x2

Solution f is injective because if x2 = y2 then x = ±y but the domain is N so x cannot be −y.

f is not surjective, for example there is no x ∈ N with x2 = 2.

f is not bijective because it is not surjective.

(b) f : R→ R given by f : x→ x2
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Solution f is not injective; for example f(2) = f(−2).

f is not surjective; for example there is no x ∈ R with x2 = −1.

f is not bijective because it is not injective.

(c) f : X → [Y → X] given by f(x) := hx where hx : Y → X is given by hx(y) := x.

Solution f is injective if Y is nonempty. If f(x) = f(x′) then for all y, hx(y) = hx′(y). But if Y
is non-empty, then there is some y ∈ Y , so x = hx(y) = hx′(y) = x′.

f is not surjective. For example, if X = Y = R, the function h(x) := x2 is not in the image of f .

f is not bijective because it is not surjective.

8. [6 points] Recall that [X → Y ] denotes the set of functions with domain X and codomain Y . Let X and Y
be nonempty sets, and let F : [X → Y ]→ [X → (Y ×Y )] be given by F (f) ::= hf , where hf : X → (Y ×Y )
is given by hf (x) ::= (f(x), f(x)) for all x.

(a) Show that F is injective. Note: g1 = g2 if and only if, for all x, g1(x) = g2(x).

Solution Assume F (f1) = F (f2). Then hf1(x) = hf2(x) for all x. That means that for all x,
(f1(x), f1(x)) = (f2(x), f2(x)). This in turn implies that f1(x) = f2(x). Since this is true for all x,
f1 = f2, as required.

(b) Show that F is not necessarily bijective.

Solution F only outputs functions that output pairs with the same first and second components.
Any function that outputs a pair with different first and second component will not be in the image
of F .

For example, let X = {0, 1} and Y = {a, b}, and let g : X → Y × Y be given by g(x) = (a, b). Then
g is not in the image of F .

2 Combinatorics

1. Give an expression describing the number of different ways the following things can happen. No credit
will be given for just the value, even if correct.

(a) During your pregnancy, you decided on a list of 23 girls’ first names and 16 boys’ first names, as
well as a list of 11 gender-neutral middle names. To your surprise, you had quintuplets, two boys
and three girls. Now you must select a first and a middle name for each child from the lists. The
names must all be different.

Solution P (16, 2) · P (23, 3) · P (11, 5) or equivalent, e.g.
(16!/14!)(23!/20!)(11!/6!), 16 · 15 · 23 · 22 · 21 · 11 · 10 · 9 · 8 · 7

(b) A professor teaching discrete structures is making up a final exam. He has a stash of 24 questions on
probability, 16 questions on combinatorics, and 10 questions on logic. He wishes to put five questions
on each topic on the exam.
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Solution

(
24

5

)(
16

5

)(
10

5

)
or equivalent

(c) The very same professor wants to assign points to the 15 problems so that each problem is worth at
least 5 points and the total number of points is 100.

Solution

(
25 + 15− 1

25

)
or

(
25 + 15− 1

15− 1

)
or equivalent

(d) There are 30 graders to grade the final exam, and the professor would like to assign two graders to
each of the 15 problems.

Solution

(
30

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

)
or

30!

215
or

(
30

2

)(
28

2

)(
26

2

)
· · ·
(

2

2

)
2. Give an expression describing the number of different ways the following things can happen. No credit

will be given for just the value, even if correct.

(a) You must choose a password consisting of 6, 7, or 8 letters from the 26-letter English alphabet
{a, b, . . . , z}.

Solution 266 + 267 + 268

(b) In a poker game, you are dealt a full house, a five-card hand containing three of a kind and a pair
of another kind; for example, three kings and two sixes.

Solution 13 ·
(

4

3

)
· 12 ·

(
4

2

)
(c) Your team is in the championship game of a soccer tournament. The score is tied at full time and

the winner will be decided by penalty kicks. As coach, you must choose a sequence of five different
players out of 11 to take the kicks.

Solution P (11, 5) = 11!/(11− 5)! = 11 · 10 · 9 · 8 · 7

(d) You have ten rings, all with different gemstones. You wish to bequeath them to your five children so
that each child inherits two of the rings.

Solution

(
10

2 2 2 2 2

)
=

10!

2! 2! 2! 2! 2!

(e) You have $400 to donate to charity, which you would like to distribute among your five favorite
charities so that each receives an integral number of dollars.
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Solution

(
400 + 5− 1

400

)
3. [8 points]

(a) Let A be the set of permutations of the string JUICE. What is |A|?

Solution 5!.

(b) Define a relation ∼ on A by x ∼ y if we can rearrange the vowels of x or the consonants of x (or
both) to form y. For example, JUICE ∼ CEIJU but JUICE 6∼ JUCIE. List 4 of the elements of
[JUICE]∼.

Solution JUICE, CUIJE, CEIJU , CIEJU .

(c) How many elements are there in each equivalence class? Briefly explain.

Solution Given a string, we can form an equivalent string by choosing a permutation of the vowels
and a permutation of the consonants. There are 3! permutations of the vowels, and 2! permutations
of the consonants, so there are 3!·2! equivalent strings, so each equivalence class contains 3!2! strings.

(d) What is |A/∼|?

Solution 5!/2!3! by the division rule.

(e) Let f : (A/∼) → {J, U, I, C,E} be given by f([x]∼) ::= the first letter of x. Is f a well-defined
function? Briefly explain.

Solution No. JUICE = CUIJE but f([JUICE]) = J 6= C = f([CUIJE]).

3 Induction

1. [6 points] Pascal’s triangle is a sequence of rows, where each entry is formed by adding the two adjacent
entries from the previous row:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
· · ·

If we let Pn,k stand for the kth entry in the nth row of Pascal’s triangle, then Pn,k is given by the formulas
P1,1 ::= 1, Pn,0 ::= 0 for all n, and Pn+1,k ::= Pn,k−1 + Pn,k if n ≥ 1.

Prove by induction on n that for all n ≥ 1, for all k with 1 ≤ k ≤ n, Pn,k =
(
n
k

)
= n!

k!(n−k)! .

Note: The definition of n! is 0! ::= 1 and n! ::= n · (n− 1)! for all n ≥ 1.
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Solution Proof by induction. Let P (n) be the statement Pn,k =
(
n
k

)
.

P (1) is true, because P1,1 = 1 and
(
1
1

)
= 1!/0!1! = 1.

Now, assume P (n); we wish to show P (n+ 1). Well,

Pn+1,k = Pn,k−1 + Pn,k by definition

=

(
n

k − 1

)
+

(
n

k

)
by induction hypothesis

=
n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!
by definition

= n!
k + (n− k + 1)

k!(n− k + 1)!
putting things over a common denominator

=
n!(n+ 1)

k!(n+ 1− k)!
algebra

=

(
n+ 1

k

)
by definition

as required.

2. Prove the following claim using induction: for any n ≥ 0,
∑n
i=0 2i = 2n+1 − 1

Solution Base case: when n = 0, the left hand side is 20 = 1 and the right hand side is 22− 1 = 1, and
they are clearly the same.

Inductive step: Choose an arbitrary n and assume that
∑n
i=0 2i = 2n+1− 1 (this is the inductive hypoth-

esis).

We wish to show that
∑n+1
i=0 2i = 2n+2 − 1. We compute:

n+1∑
i=0

2i =

n∑
i=0

2i + 2n+1 arithmetic

= (2n+1 − 1) + 2n+1 by the inductive hypothesis

= 2 · 2n+1 − 1 = 2n+2 − 1

as required.

3. We define a set S of functions from Z to Z inductively as follows:

Rule 1. For any n ∈ Z, the translation (or offset) function tn : x 7→ x+ n is in S.

Rule 2. For any k 6= 0 ∈ Z, the scaling function rk : x 7→ kx is in S.

Rule 3. If f and g are elements of S, then the composition f ◦ g ∈ S.

Rule 4. If f ∈ S and f has a right inverse g, then g is also in S.

In other words, S consists of functions that translate and scale integers, and compositions and right
inverses thereof.

Note: This semester, we made a bigger distinction between the elements of an inductively
defined set and the meaning of an inductively defined set. We probably would have phrased this
question as follows: Let S be given by

s ∈ S ::= tn | rk | s1 ◦ s2 | rinv s
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and inductively, let the function defined by s (written Fs : Z → Z) be given by the rules
Ftn(x) ::= x+ n, Frk(x) ::= ks, Fs1◦s2(x) ::= Fs1 ◦ Fs2 and let Frinv s ::= g where g is a right
inverse of Fs.

(a) [1 point] Show that the function f : x 7→ 3x+ 17 is in S.

Solution By rule 1, the function t17 : x 7→ x + 17 is in S, and by rule 2, r3 : x 7→ 3x is in S. By
rule 3, therefore, t17 ◦ r3 : x 7→ 3x+ 17 is in S.

(b) Use structural induction to prove that for all f ∈ S, f is injective. You may use without proof the
fact that the composition of injective functions is injective.

Solution We must show that all functions formed with each of the rules are injective. Let P (s)
be the statement s is injective.

P (tk) holds, because tk has a two sided inverse t−k, and is therefore injective.

P (rk) holds, because we required that k 6= 0. Therefore, if kx1 = kx2, we can cancel k to find
x1 = x2.

P (f ◦ g) holds, assuming P (f) and P (g), because the composition of injections is an injection.

If g is the right inverse of f , then P (g) holds, because g has a left-inverse (namely f) and is therefore
injective.

(c) Give a surjection φ from S to Z (proof of surjectivity not necessary). Remember that this surjection
must map a function to an integer, and for every integer there must be a function that maps to it.

Solution Let φ(s) ::= s(0). This is a surjection, because tn(0) = 0 + n = n, so for any n there
exists s ∈ S (namely tn) with φ(s) = n.

4. The Fibonacci numbers F0, F1, F2, . . . are defined inductively as follows:

F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2

That is, each Fibonacci number is the sum of the previous two numbers in the sequence. Prove by induction
that for all natural numbers n (including 0):

n∑
i=0

Fi = Fn+2 − 1

Solution Let P (n) be the statement “
∑n
i=0 Fi = Fn+2−1. We must show P (0) and P (n+ 1) assuming

P (n).

To see P (0), note that
∑0
i=0 Fi = F0 = 1, while F0+2 − 1 = F0 + F1 − 1 = 1 + 1− 1 = 1. Since they are

the same, P (0) holds.

To see P (n+ 1), first assume P (n). We have

n+1∑
i=0

Fi =

n∑
i=0

Fi + Fn+1

= Fn+2 − 1 + Fn+1 by P (n)

= Fn+1+2 − 1 by definition of Fn+1+2

as required.
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5. Prove by induction that for any integer n ≥ 3, n2 − 7n+ 12 is non-negative.

Solution Let P (n) be the statement “n2 − 7n+ 12 is non-negative.” We must show P (3), and for any
n ≥ 3, P (n+ 1) assuming P (n).

To see P (3), note that 32 − 7 · 3 + 12 = 0 ≥ 0.

Now, assume n ≥ 3 and P (n); we want to show P (n+ 1). Well,

(n+ 1)2 − 7(n+ 1) + 12 = n2 + 2n+ 1− 7n− 7 + 12

= (n2 − 7n+ 12) + (2n+ 1− 7)

≥ 2n+ 1− 7 by P (n)

≥ 0 since n ≥ 3

4 Automata

1. Given DFAs M1 = (Q1,Σ, δ1, q01, F1) and M2 = (Q2,Σ, δ2, q02, F2), we can construct a machine M12 with
L(M12) = L(M1) ∩ L(M2) as follows:

• Let Q = Q1 ×Q2 = the set of all ordered pairs (q1, q2), where q1 ∈ Q1 and q2 ∈ Q2.

• Let q0 ∈ Q = (q01, q02).

• Let F = F1 × F2 = {(q1, q2) | q1 ∈ F1 and q2 ∈ F2}.

• Let δ12((q1, q2), a) = (δ1(q1, a), δ2(q2, a)).

• Let M12 = (Q,Σ, δ12, q0, F ).

Use structural induction to prove that for all x ∈ Σ∗, δ̂12((q1, q2), x) =
(
δ̂1(q1, x), δ̂2(q2, x)

)
.

Solution The main challenge here is wading through the notational jungle to understand what the
problem actually says. Once you’ve done this, the proof is short and straightforward. Here it is in all its
glory:

We will prove the result by structural induction on x, as suggested. Both the set of strings Σ∗

and the extended transition function δ̂ are defined recursively (see the definitions at the end).
The base case for x is the empty string ε. We can simply read off the corresponding line in the
definition of δ̂, which tells us that

• δ̂1(q1, ε) = q1,

• δ̂2(q2, ε) = q2, and

• δ̂12((q1, q2), ε) = (q1, q2).

Hence δ̂12((q1, q2), ε) = (q1, q2) =
(
δ̂1(q1, ε), δ̂2(q2, ε)

)
, so the statement is true in the base case.

Now assume the statement is true for some string x, and consider the “next larger” string xa.

Again reading off the appropriate line in the definition of δ̂, we know that

• δ̂1(q1, xa) = δ1(δ̂1(q1, x), a), and

• δ̂2(q2, xa) = δ2(δ̂2(q2, x), a)
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What is δ̂12((q1, q2), xa)? Well, we also have

δ̂12((q1, q2), xa) = δ12(δ̂12((q1, q2), x), a) (definition of δ̂12)

= δ12

((
δ̂1(q1, x), δ̂2(q2, x)

)
, a
)

(inductive hypothesis)

=
(
δ1

(
δ̂1(q1, x), a

)
, δ2

(
δ̂2(q2, x), a

))
(definition of δ12)

=
(
δ̂1(q1, xa), δ̂2(q2, xa)

)
(definition of δ̂1, δ̂2)

This proves the statement for all strings x ∈ Σ∗ by (structural) induction.

2. Draw a finite automaton (DFA, NFA or ε-NFA) with alphabet {0, 1} to recognize the language

{x ∈ {0, 1}∗ | x contains the substring 010}

Solution An NFA is probably the easiest to construct.

q0start q1 q2 q3

0, 1

0 1 0

0, 1

3. Draw a finite automaton (DFA, NFA or ε-NFA) with alphabet {a, b} to recognize strings of the form
x1x2x3 · · · where each xi is either “ab” or “ba”.

Solution

q0start

qa

qb

hell

a

b

a

b

a b

a, b

4. Prove that L = {0n10n | n ∈ N} is not DFA-recognizable.

Solution Suppose that this language is accepted by some deterministic finite automaton with N states.
Consider the string x = 0n10n. Since x is in the language and |x| ≥ N , by the Pumping Lemma, there
exist strings u, v, and w such that x = uvw, |v| ≥ 1, |uv| ≤ N , and M accepts uviw for all i > 0. Since
|uv| ≤ N , it must be the case that uv is a string of 0’s, and that w contains the 1 in 0N10N . Thus, if
i > 1, uviw has more than N 0s to the left of the 1 and only N 0s to the right of the 1, and thus is not
in the language. This contradicts the assumption that the language is accepted by M (since M accepts
a string not in the language).

5. Build a deterministic finite automaton that recognizes the set of strings of 0’s and 1’s, that only contain
a single 0 (and any number of 1’s). Describe the set of strings that lead to each state.
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Solution

q0start q1 q2

1

0

1

0

0,1

The strings leading to qi contain i 0’s.

6. Given a string x, we can define the “character doubling” of x to be x with every character doubled: for
example cd(abc) = aabbcc. Formally, cd(ε) = ε, and cd(xa) = cd(x)aa. We can then define the “character
doubling” of a language L to be the set of all strings formed by doubling the characters of strings in L;
formally cd(L) = {cd(x) | x ∈ L}.

Given a DFA M = (Q,Σ, δ, q0, F ), we can construct a new DFA Mcd that recognizes cd(L(M)) by adding
a new state q′qa to the middle of every transition from q on character a:

q1 q2 becomes q1 q′q1a q2
a a a

(a) Formally describe the components (Qcd,Σcd, δcd, q0cd, Fcd) of Mcd in terms of the components of M .
Be sure to describe δcd on all inputs (you may need to add one or more additional states).

Solution Qcd = Q ∪ {q′qa | q ∈ Q, a ∈ A} ∪ {X}

δcd : (q, a) 7→ q′qa; δcd : (q′qa, a) 7→ δ(q, a); δcd : (q′qa, b) 7→ X if a 6= b, and δcd : (X, a) 7→ X.

The remaining components are unchanged: Σcd = Σ, q0cd = q0, and Fcd = F .

(b) Use structural induction on x to prove that for all x, δ̂(q0, x) = δ̂cd(q0cd, cd(x)).

Solution Let P (x) be the statement that δ̂(q0, x) = δ̂cd(q0, cd(x)). I will prove ∀x, P (x) by struc-
tural induction.

To show P (ε), note that δ̂(q0, ε) = q0. Moreover, cd(ε) = ε, so δ̂cd(q0, cd(ε)) = δ̂cd(q0, ε) = q0 =

δ̂(q0, ε), as required.

To show P (xa), we assume the inductive hypothesis P (x). we compute:

δ̂cd(q0, cd(xa)) = δ̂cd(q0, cd(x)aa) by definition of cd

= δcd(δcd(δ̂cd(q0, cd(x)), a), a) by definition of δ̂cd

= δcd(δcd(δ̂(q0, x), a), a) by definition of δ̂cd

= δcd(q(δ̂(q0,x))a, a) by definition of δcd

= δ(δ̂(q0, x), a) by definition of δcd

= δ̂(q0, xa) by definition of δ̂

(c) We can also define the “string doubling” of x to be xx. For example, sd(abc) = abcabc. Show that the
set of regular languages is not closed under string doubling. In other words, give a regular language
L and prove that sd(L) = {sd(x) | x ∈ L} is not regular.

You can use any theorem proved in class to help prove this result.
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Solution Let L = 0∗1. Clearly L is regular. Moreover, sd(L) = {0n10n1 | n ∈ N}.

This language is not regular. To see this, assume for the sake of contradiction that it is. Then there
exists some natural number m as in the pumping lemma. Let x = 0m10m1. Clearly x ∈ sd(L), and
|x| ≥ m, so we can split x into u, v, and w, as in the pumping lemma. We know that |uv| ≤ n, so
v can only contain 0’s. Then x′ = uv2w contains more 0’s before the first 1 than after, and thus
x′ /∈ sd(L). But the pumping lemma says that x′ ∈ sd(L); this is a contradiction, and thus sd(L) is
not regular.

7. Happy Cat has been shown the following proof, and has promptly turned into Grumpy Cat. Briefly but
clearly identify the error which has induced grumpiness.

To prove: The language of the regular expression 0∗1∗ is, in fact, not DFA-recognizable.

Proof. Let L be the language of 0∗1∗. Assume there is some DFA M with n states that recognizes
L. Let x = 0n−111. Clearly, x ∈ L and |x| ≥ n. Therefore according to the Pumping Lemma,
we can split x into three parts u, v and w, such that |uv| ≤ n, |v| ≥ 1, and uviw ∈ L for all
natural numbers i. Let |v| = n. Since |uv| ≤ n, it must be the case that u = ε, and v = 0n−11.
Then uv2w = 0n−110n−111, which is clearly not in L. This contradicts our assumption that
there is a DFA which recognizes the language.

Solution The pumping lemma says there exists some v, but we have chosen a specific v. It may be that
the pumping lemma gives some other v (such as 0).
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