CS 2800: Discrete Structures, Fall 2014

Sid Chaudhuri

Not to be confused with...

Arithmeticorum Lib. II.

teruallo quadratorum, & Canones iidem hie etiam locum habebunt, vt manife-

QVÆSTIO VIII.

DROPOSITYM quadratum TON For Caxoca To a zwoor dividere in duos quadratos. Imperatum fit vt 16, diuidatur - 1 Q. æquales esse quadrato. Fingo quadratum à numeris quotquot libuerit, cum defe-4 Q. + 16. - 16 N. hac aquarantur similia, fient , Q. aquales 16 N. & fit 1 N. # Eritigi-

Sexer eis No remanavois. éin duos quadratos. Ponatur mrelazon Artis Aller eis No reprimus 1 Q. Oportet igitur 16 mazwous. Hay relazow i mesins Sunanews mag. Sinos age mord-Sas is reit Suranews mas ious du tot vnitatum quot conti- Trefalwiw. πλασιω τ τεβάρωnet latus ipfius 16. cfto à 2 N. vor doto cc. cour d'i more sei di To-- 4. iple igitur quadratus crit oran i oow Bly n 715 po madbuntur vnitatibus 16 - 1 Q. ed. 1500 55 B Nei L u' & wing Communisadiiciatur verimque aea o refazavos esas Swapew defectus, & à similibus aufe- Suis [rel 455 15] Taura loa Movaos is sait Suvapiews mas. the alter quadratorum # alter xoun megonelaw i nei les, il bord verò ... & veriulque fumma est oposwo oposa. Sunanes a ega e ioaj feu 16. & vterque quadratus de el pois ir. maleran à Soid pos וה חבושולם ו בבש ל עלם סיד פוצוקם-

พยุ่มที่เพง. o de put cinosowe แท่เพง. € @ No ountedevice moiodor บั eixosomepunta, ท่าง pordolar เร. หล่า ซึ่งเขาะหล่าคือร กะกายล่วยง ...

quadratos. Ponatur rurfus priconstat latus diuidendi. Esto i-

Rum 16. dividere in duos E TO M malu nov 15 rengami latus i N. alterius verò νοις. πίαχθω παλίν ή τε πεωτου quoteunque numerorum cum Theograficos, in Frances oow defectu tot vnitatum , quot Annore de 14 4 oow of is & Stay-

Fermat's Last Theorem:

 $x^n + y^n = z^n$ has no integer solution for n > 2

Recap: Modular Arithmetic

- Definition: $a \equiv b \pmod{m}$ if and only if $m \mid a b$
- Consequences:
 - $-a \equiv b \pmod{m} \text{ iff } a \bmod m = b \bmod m$ $(\text{congruence} \Leftrightarrow \text{Same remainder})$
 - If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
 - $a + c \equiv b + d \pmod{m}$
 - $ac \equiv bd \pmod{m}$

(congruences can sometimes be treated like equations)

• If p is a prime number, and a is any integer, then

$$a^p \equiv a \pmod{p}$$

• If p is a prime number, and a is any integer, then

$$a^p \equiv a \pmod{p}$$

• If a is not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Examples:

$$-21^7 \equiv 21 \pmod{7}$$
... but $21^6 \not\equiv 1 \pmod{7}$

$$-111^{12} \equiv 1 \pmod{13}$$

$$-123,456,789^{2^{57,885,161}-2} \equiv 1 \pmod{2^{57,885,161}-1}$$

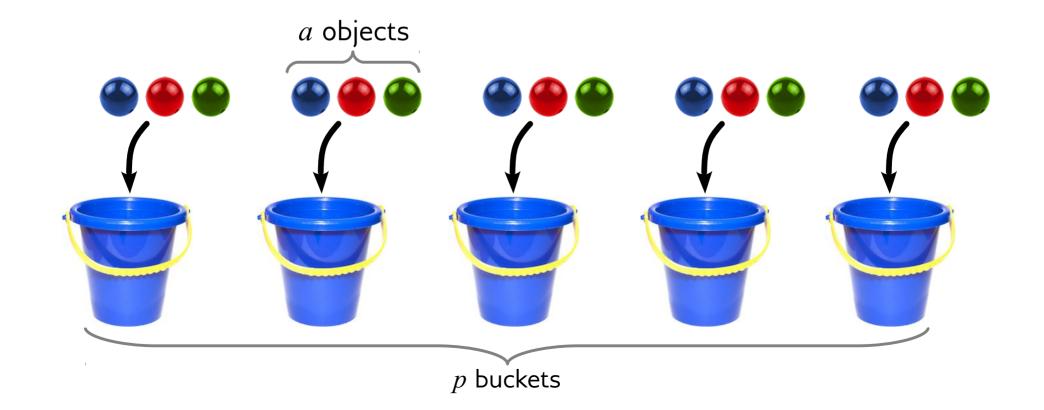
Two proofs

- Combinatorial
 - ... counting things
- Algebraic
 - ... induction
- We'll consider only non-negative a
 - ... the result for non-negative α can be extended to negative integers

(try it using what we know of congruences!)

Counting necklaces

- Due to Solomon W. Golomb, 1956
- Basic idea: a^p suggests we see how to fill p buckets, where each is filled with one of a objects

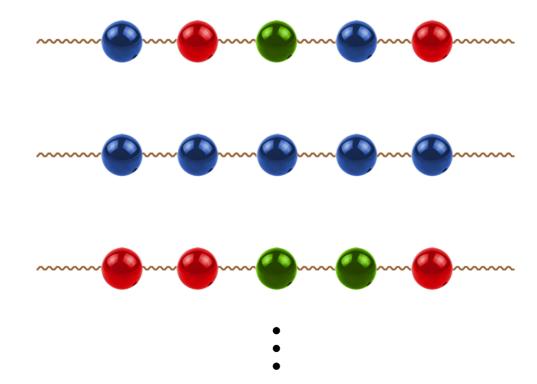


Strings of beads

- Each way of filling the buckets gives a different sequence of p objects ("beads")
 - a^p such sequences

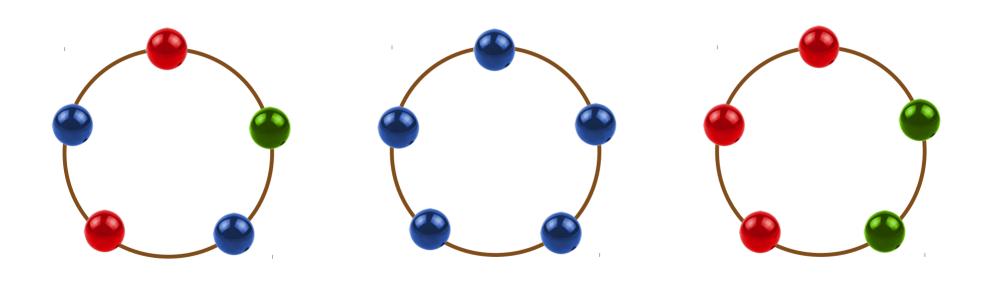
Strings of beads

Now string the beads together...



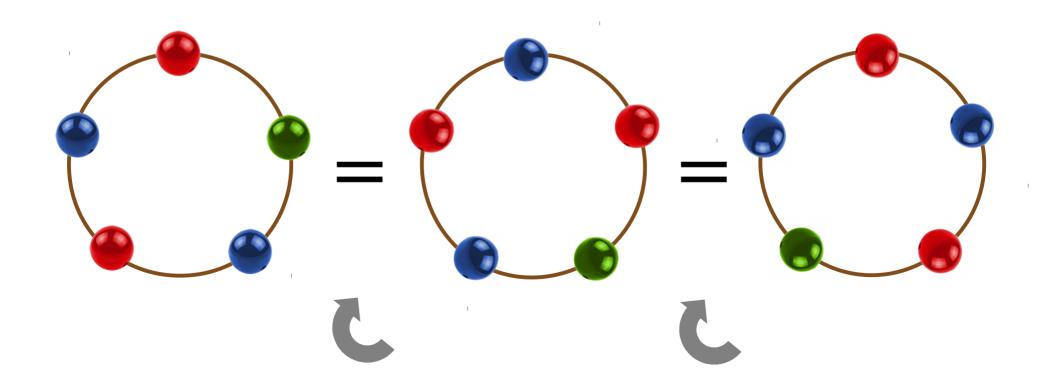
Strings of beads

• ... and join the ends to form "necklaces"



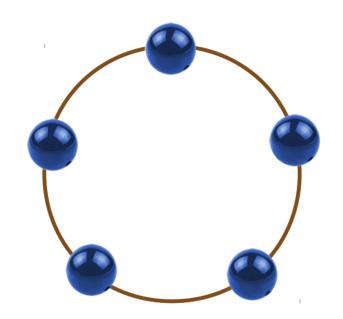
A necklace rotated...

- ... is the same necklace
 - Different strings can produce the same necklace when the ends are joined



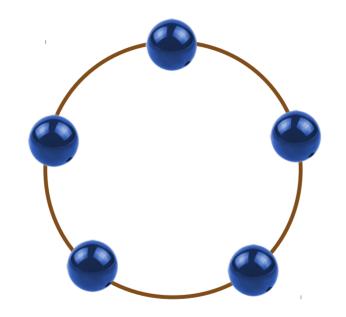
Two types of necklaces

Containing beads of a single color



Two types of necklaces

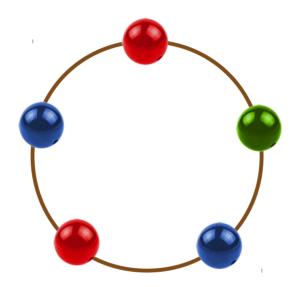
Containing beads of a single color



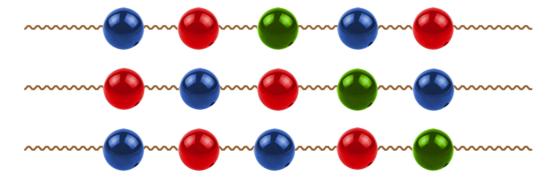
Only one possible string

Two types of necklaces

Containing beads of different colors

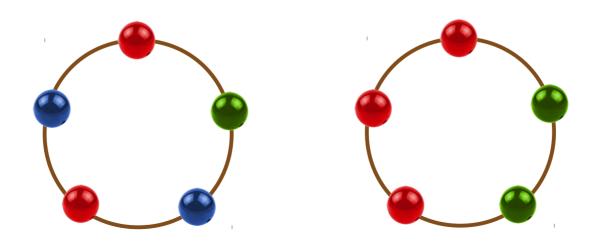


Many possible strings

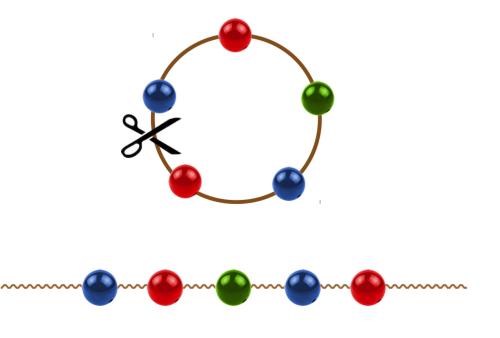


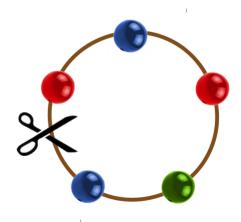
Lemma

- If p is a prime number and N is a necklace with at least two colors, every rotation of N corresponds to a different string
 - ... i.e. there are exactly p different strings that form the same necklace N

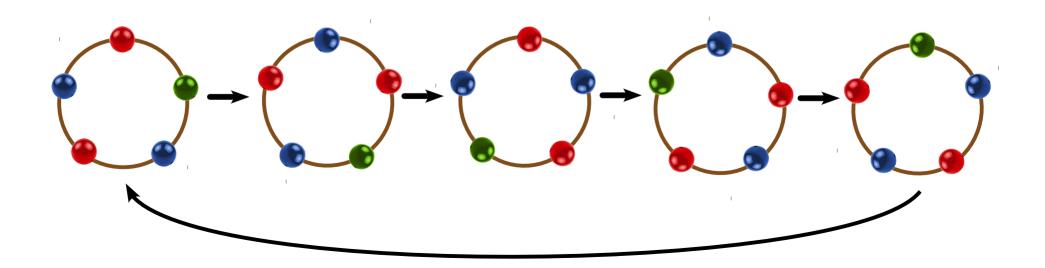


- First, note that each string corresponds to
 - a rotation of the necklace, and then...
 - ... cutting it at a fixed point





- No more than p strings can give the same necklace
 - There are only p (say clockwise) rotations of the necklace (that align the beads) before we loop back to the original orientation



• Now we'll show that no less than p strings give the same necklace

- Now we'll show that no less than p strings give the same necklace
- Consider clockwise rotations by 1/p of a full circle

- Now we'll show that no less than p strings give the same necklace
- Consider clockwise rotations by 1/p of a full circle
- Let k be the <u>minimum</u> number of such rotations before the original configuration is repeated

- Now we'll show that no less than p strings give the same necklace
- ullet Consider clockwise rotations by 1/p of a full circle
- Let k be the <u>minimum</u> number of such rotations before the original configuration is repeated
 - Clearly, $k \le p$ (p rotations bring us back to the start)

- Now we'll show that no less than p strings give the same necklace
- ullet Consider clockwise rotations by 1/p of a full circle
- Let k be the <u>minimum</u> number of such rotations before the original configuration is repeated
 - Clearly, $k \le p$ (p rotations bring us back to the start)
- Claim: *k* | *p*

• Claim: *k* | *p*

- Claim: *k* | *p*
- Proof:

```
- Let p = qk + r, with 0 \le r < k (division algorithm)
```

- Claim: *k* | *p*
- Proof:
 - Let p = qk + r, with $0 \le r < k$ (division algorithm)
 - q iterations, each of k rotations, restores the original configuration (by definition of k)

- Claim: *k* | *p*
- Proof:
 - Let p = qk + r, with $0 \le r < k$ (division algorithm)
 - q iterations, each of k rotations, restores the original configuration (by definition of k)
 - So do p rotations (full circle)

- Claim: *k* | *p*
- Proof:
 - Let p = qk + r, with $0 \le r < k$ (division algorithm)
 - q iterations, each of k rotations, restores the original configuration (by definition of k)
 - So do p rotations (full circle)
 - therefore so do r rotations

- Claim: *k* | *p*
- Proof:
 - Let p = qk + r, with $0 \le r < k$ (division algorithm)
 - q iterations, each of k rotations, restores the original configuration (by definition of k)
 - So do p rotations (full circle)
 - ... therefore so do r rotations
 - But r < k and we said k was the minimum "period"!

- Claim: *k* | *p*
- Proof:
 - Let p = qk + r, with $0 \le r < k$ (division algorithm)
 - q iterations, each of k rotations, restores the original configuration (by definition of k)
 - So do p rotations (full circle)
 - ... therefore so do r rotations
 - But r < k and we said k was the minimum "period"!
 - ... which is a contradiction, unless r = 0

• Since $k \mid p$ and $k \le p$ and p is prime, we must have either

- Since $k \mid p$ and $k \le p$ and p is prime, we must have either
 - -k=1 (impossible if necklace has at least two colors)

- Since $k \mid p$ and $k \le p$ and p is prime, we must have either
 - -k=1 (impossible if necklace has at least two colors)
 - or
 - -k=p

- Since $k \mid p$ and $k \le p$ and p is prime, we must have either
 - k = 1 (impossible if necklace has at least two colors) or
 - -k=p
- This proves the lemma

What we have so far

What we have so far

Necklaces with one color

- Necklaces with one color
 - a such strings (one for each color), therefore a such necklaces

- Necklaces with one color
 - a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors

- Necklaces with one color
 - a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
 - Each corresponds to p different strings

- Necklaces with one color
 - a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
 - Each corresponds to p different strings
 - $-a^{p}-a$ strings of multiple colors, therefore $(a^{p}-a)/p$ such necklaces

- Necklaces with one color
 - a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
 - Each corresponds to p different strings
 - $-a^{p}-a$ strings of multiple colors, therefore $(a^{p}-a)/p$ such necklaces
 - $\Rightarrow p \mid a^p a$ (can't have half a necklace)

- Necklaces with one color
 - a such strings (one for each color), therefore a such necklaces
- Necklaces with multiple colors
 - Each corresponds to p different strings
 - $-a^{p}-a$ strings of multiple colors, therefore $(a^{p}-a)/p$ such necklaces
 - $\Rightarrow p \mid a^p a$ (can't have half a necklace)
 - $\Rightarrow a^p \equiv a \pmod{p}$ QED!

• For a given prime p, we'll do induction on a

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^p \equiv 0 \pmod{p}$

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^p \equiv 0 \pmod{p}$
- Inductive hypothesis: $a^p \equiv a \pmod{p}$

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^p \equiv 0 \pmod{p}$
- Inductive hypothesis: $a^p \equiv a \pmod{p}$
- Consider $(a+1)^p$

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^p \equiv 0 \pmod{p}$
- Inductive hypothesis: $a^p \equiv a \pmod{p}$
- Consider $(a+1)^p$
- By the Binomial Theorem,

$$(a+1)^p = a^p + {p \choose 1}a^{p-1} + {p \choose 2}a^{p-2} + {p \choose 3}a^{p-3} + \dots + {p \choose p-1}a+1$$

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^p \equiv 0 \pmod{p}$
- Inductive hypothesis: $a^p \equiv a \pmod{p}$
- Consider $(a+1)^p$
- By the Binomial Theorem,

$$(a+1)^p = a^p + {p \choose 1}a^{p-1} + {p \choose 2}a^{p-2} + {p \choose 3}a^{p-3} + \dots + {p \choose p-1}a+1$$

- All RHS terms except last & perhaps first are divisible by p

- For a given prime p, we'll do induction on a
- Base case: Clear that $0^p \equiv 0 \pmod{p}$
- Inductive hypothesis: $a^p \equiv a \pmod{p}$
- Consider $(a+1)^p$
- By the Binomial Theorem, integer. P is prime, so it isn't canceled

Binomial coefficient $\binom{P}{k}$ is

P!/k!(P-k)!, which is always an

out by terms in the denominator

$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \binom{p}{3}a^{p-3} + \dots + \binom{p}{p-1}a+1$$

- All RHS terms except last & perhaps first are divisible by p

• Therefore $(a+1)^p \equiv a^p + 1 \pmod{p}$

- Therefore $(a+1)^p \equiv a^p + 1 \pmod{p}$
- But by the inductive hypothesis, $a^p \equiv a \pmod{p}$

- Therefore $(a+1)^p \equiv a^p + 1 \pmod{p}$
- But by the inductive hypothesis, $a^p \equiv a \pmod{p}$

$$\Rightarrow a^p + 1 \equiv a + 1 \pmod{p}$$
 (properties of congruence)

- Therefore $(a+1)^p \equiv a^p + 1 \pmod{p}$
- But by the inductive hypothesis, $a^p \equiv a \pmod{p}$

$$\Rightarrow a^p + 1 \equiv a + 1 \pmod{p}$$
 (properties of congruence)

• Therefore $(a+1)^p \equiv a+1 \pmod{p}$

- Therefore $(a+1)^p \equiv a^p + 1 \pmod{p}$
- But by the inductive hypothesis, $a^p \equiv a \pmod{p}$

$$\Rightarrow a^p + 1 \equiv a + 1 \pmod{p}$$
 (properties of congruence)

• Therefore $(a+1)^p \equiv a+1 \pmod{p}$

(congruence is transitive - prove!)

- Therefore $(a+1)^p \equiv a^p + 1 \pmod{p}$
- But by the inductive hypothesis, $a^p \equiv a \pmod{p}$

$$\Rightarrow a^p + 1 \equiv a + 1 \pmod{p}$$
 (properties of congruence)

• Therefore $(a+1)^p \equiv a+1 \pmod{p}$

(congruence is transitive - prove!)

Hence proved by induction