
Kleene's Theorem

CS 2800: Discrete Structures, Fall 2014

Sid Chaudhuri

Kleene's Theorem

● A language is regular, i.e. it can be defned by a
regular expression, if and only if it is recognized by
a fnite automaton

Kleene's Theorem

● A language is regular, i.e. it can be defned by a
regular expression, if and only if it is recognized by
a fnite automaton
– Regex has FA

● Relatively simple construction

Kleene's Theorem

● A language is regular, i.e. it can be defned by a
regular expression, if and only if it is recognized by
a fnite automaton
– Regex has FA

● Relatively simple construction

– FA has regex
● Tricky to prove

Regex → FA

● For every regular expression, there is a fnite
automaton that recognizes the same language

Regex → FA

● For every regular expression, there is a fnite
automaton that recognizes the same language

● We will construct an ε-NFA

Regex → FA

● For every regular expression, there is a fnite
automaton that recognizes the same language

● We will construct an ε-NFA
– … which can be converted to an NFA

Regex → FA

● For every regular expression, there is a fnite
automaton that recognizes the same language

● We will construct an ε-NFA
– … which can be converted to an NFA
– … which can be converted to a DFA

Recap: NFAs with epsilon transitions

● Just like ordinary NFAs, but...
– Can “instantaneously” change state
without reading an input symbol

– Valid transitions of this type are
shown by arcs labeled 'ε'

– Note that ε does not suddenly
become a member of the alphabet.
Instead, we assume ε does not
belong to any alphabet – it's a
special symbol.

q
0

q
2

q
1

a ε

εb

Why ε-NFAs?
● Suitable for representing “or” relations
● E.g. L = { an | n ∈ N is divisible by 2 or 3 }

● … but they're equivalent to NFAs and DFAs

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a
a a

a

ε-NFA to ordinary NFA

● The ε-closure of a state q is the set of states that
can be reached from q following only ε-transitions

ε-NFA to ordinary NFA

● The ε-closure of a state q is the set of states that
can be reached from q following only ε-transitions
– The set includes q itself

ε-NFA to ordinary NFA

● The ε-closure of a state q is the set of states that
can be reached from q following only ε-transitions
– The set includes q itself
– We'll denote the set ECLOSE(q)

ε-NFA to ordinary NFA

● The ε-closure of a state q is the set of states that
can be reached from q following only ε-transitions
– The set includes q itself
– We'll denote the set ECLOSE(q)

ECLOSE(p) = ?

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

ε-NFA to ordinary NFA

● The ε-closure of a state q is the set of states that
can be reached from q following only ε-transitions
– The set includes q itself
– We'll denote the set ECLOSE(q)

ECLOSE(p) = { p, q
0
, r

0
 }

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

x

x x

x
A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 2, 3, 4 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

x

x x

x
A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 2, 3, 4 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

ε
x x

x
A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 2, 3, 4 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

ε
x x

x
A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 2, 3, 4 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

ε
ε ε

ε
A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

ε
ε ε

ε
A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

x

ε ε
x

A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

x

ε ε
x

A) { 2, 4 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

ECLOSE(1)?

1

4

2 3

5 6

x

x

ε

x

ε ε
x

A) { 1 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

ECLOSE(1)?

1

4

2 3

5 6

x

x

ε

x

ε ε
x

A) { 1 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

x

ε x

x
A) { 1, 2, 3 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

ECLOSE(1)?

1

4

2 3

5 6

ε

ε

ε

x

ε x

x
A) { 1, 2, 3 }
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 1, 2, 3, 4, 5, 6 }

E) { 1, 2, 3, 4, 5 }

ε-NFA to ordinary NFA

● Converting ε-NFA Nε to ordinary NFA N (short-
circuiting ε paths)

ε-NFA to ordinary NFA

● Converting ε-NFA Nε to ordinary NFA N (short-
circuiting ε paths)

1. Make p an accepting state of N if ECLOSE(p)
contains an accepting state of Nε

ε-NFA to ordinary NFA

● Converting ε-NFA Nε to ordinary NFA N (short-
circuiting ε paths)

1. Make p an accepting state of N if ECLOSE(p)
contains an accepting state of Nε

2. Add an arc labeled a from p to q if Nε has an arc
labeled a from some state in ECLOSE(p) to q

ε-NFA to ordinary NFA

● Converting ε-NFA Nε to ordinary NFA N (short-
circuiting ε paths)

1. Make p an accepting state of N if ECLOSE(p)
contains an accepting state of Nε

2. Add an arc labeled a from p to q if Nε has an arc
labeled a from some state in ECLOSE(p) to q

3. Delete all arcs labeled ε

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

Make p an accepting
state of N if

ECLOSE(p) contains an
accepting state of Nε

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

Make p an accepting
state of N if

ECLOSE(p) contains an
accepting state of Nε

Add an arc labeled a
from p to q if Nε has
an arc labeled a from

some state in
ECLOSE(p) to q

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

a

a

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

p

r
0

q
0

q
1

r
1 r

2

a

a

a a

a

a

a

Make p an accepting
state of N if

ECLOSE(p) contains an
accepting state of Nε

Add an arc labeled a
from p to q if Nε has
an arc labeled a from

some state in
ECLOSE(p) to q

Delete all arcs
labeled ε

p

r
0

q
0

q
1

r
1 r

2

ε

ε

a

a

a a

a

a

a

Regular expression to ε-NFA

● Structural induction on regex
– Construct simple automata for base cases
– For every higher-order construction, construct

equivalent ε-NFA from smaller ε-NFAs

Empty set

q
0

Regex: ∅

Empty string

q
0

Regex: ε

Literal character

q
1

Regex: a

q
0

a

Concatenation

Regex: AB

Concatenation

Regex: AB p'

p
0

...
p"

ⵗNFA for A

q
0

...
NFA for B

Concatenation

Regex: AB p'

p
0

...
p"

ⵗNFA for A

q
0

...
NFA for B

p'

p
0

...
p"

ⵗ

q
0

...

NFA for AB

ε

ε

Alternation

Regex: A|B

Alternation

Regex: A|B

q
0

...
NFA for B

p
0

...
NFA for A

Alternation

Regex: A|B

q
0

...
NFA for B

s

NFA for A|B

p
0

...
NFA for A

p
0

...

q
0

...

ε

ε

Kleene star

Regex: A*

Kleene star

Regex: A*

p'p
0

...

ⵗ
NFA for A

Kleene star

Regex: A*

s

NFA for A*

p'p
0

...

ⵗ
NFA for A p'p

0
...

ⵗ

f
ε ε

ε

ε

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

