CS 2800: Discrete Structures, Fall 2014

Sid Chaudhuri

• A language is *regular*, i.e. it can be defined by a regular expression, if and only if it is recognized by a finite automaton

- A language is *regular,* i.e. it can be defined by a regular expression, if and only if it is recognized by a finite automaton
 - Regex has FA
 - Relatively simple construction

- A language is *regular,* i.e. it can be defined by a regular expression, if and only if it is recognized by a finite automaton
 - Regex has FA
 - Relatively simple construction
 - FA has regex
 - Tricky to prove

• For every regular expression, there is a finite automaton that recognizes the same language

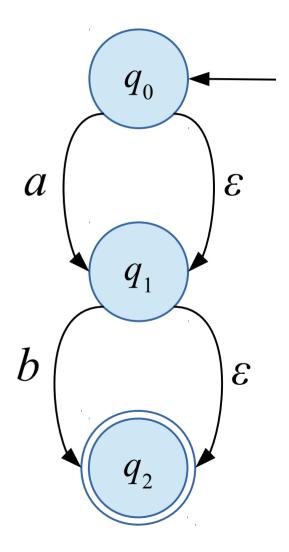
- For every regular expression, there is a finite automaton that recognizes the same language
- We will construct an ε -NFA

- For every regular expression, there is a finite automaton that recognizes the same language
- We will construct an ε -NFA
 - ... which can be converted to an NFA

- For every regular expression, there is a finite automaton that recognizes the same language
- We will construct an ε -NFA
 - ... which can be converted to an NFA
 - ... which can be converted to a DFA

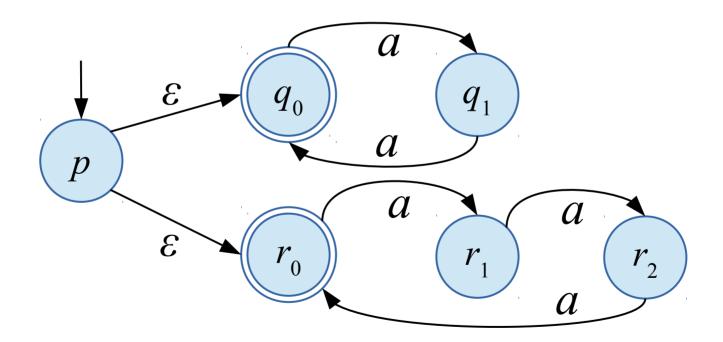
Recap: NFAs with epsilon transitions

- Just like ordinary NFAs, but...
 - Can "instantaneously" change state *without* reading an input symbol
 - Valid transitions of this type are shown by arcs labeled ' ε '
 - Note that ɛ does not suddenly become a member of the alphabet.
 Instead, we assume ɛ does not belong to *any* alphabet – it's a special symbol.



Why ε -NFAs?

- Suitable for representing "or" relations
- E.g. $L = \{ a^n \mid n \in \mathbb{N} \text{ is divisible by } 2 \text{ or } 3 \}$



• ... but they're equivalent to NFAs and DFAs

• The ε -closure of a state q is the set of states that can be reached from q following only ε -transitions

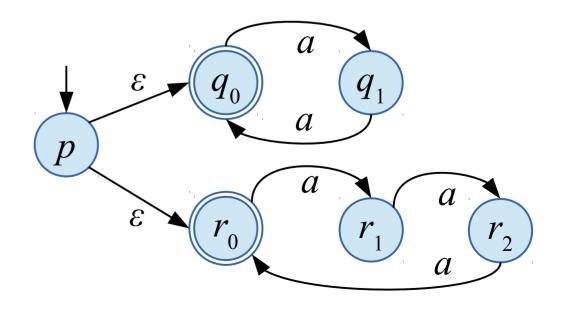
• The ε -closure of a state q is the set of states that can be reached from q following only ε -transitions

– The set includes q itself

$\ensuremath{\mathcal{E}}\xspace$ -NFA to ordinary NFA

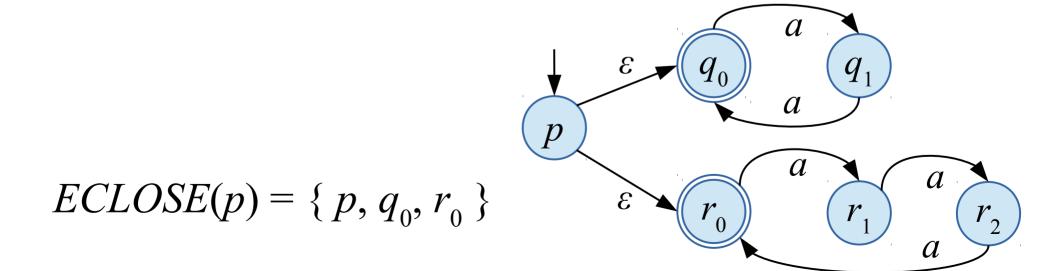
- The ε -closure of a state q is the set of states that can be reached from q following only ε -transitions
 - The set includes q itself
 - We'll denote the set ECLOSE(q)

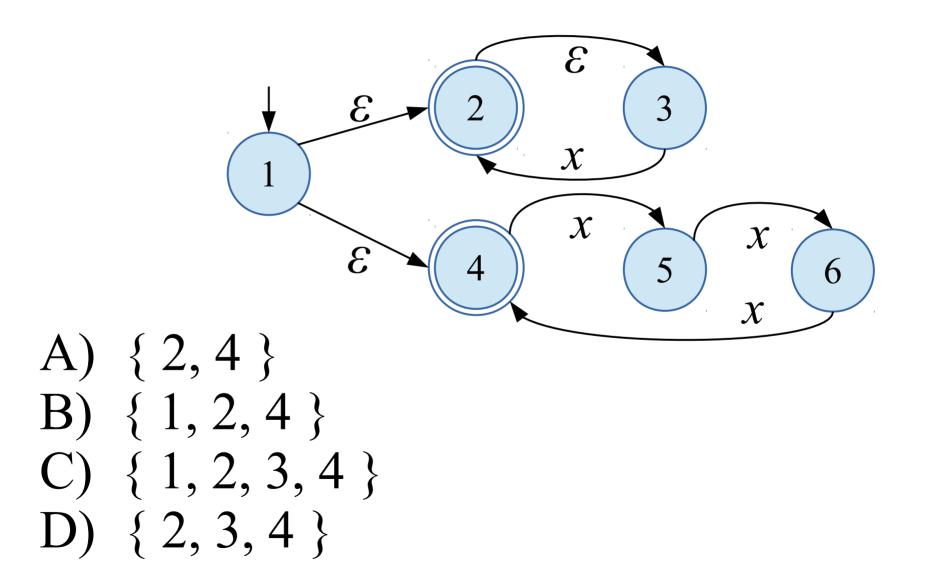
- The ε -closure of a state q is the set of states that can be reached from q following only ε -transitions
 - The set includes q itself
 - We'll denote the set ECLOSE(q)

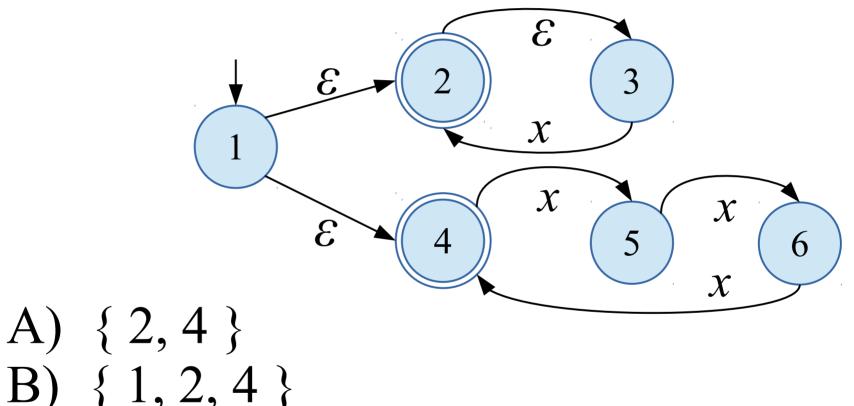


$\ensuremath{\mathcal{E}}\xspace$ -NFA to ordinary NFA

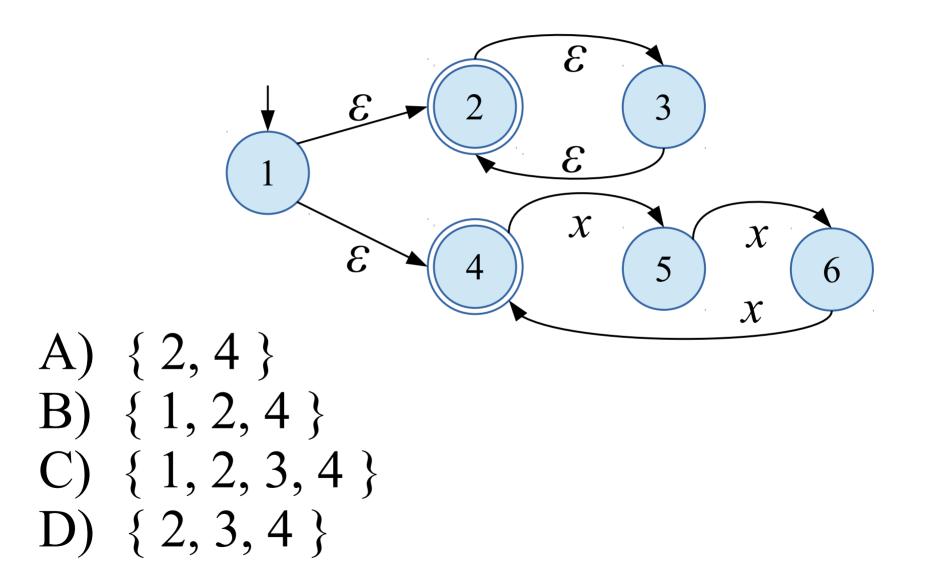
- The ε -closure of a state q is the set of states that can be reached from q following only ε -transitions
 - The set includes q itself
 - We'll denote the set ECLOSE(q)

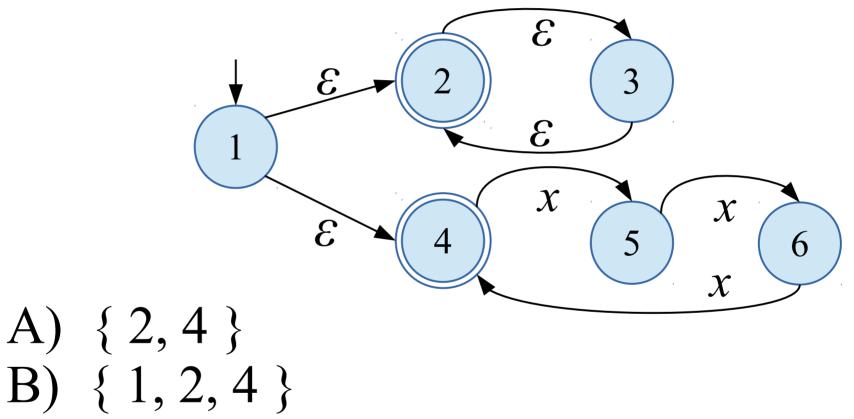




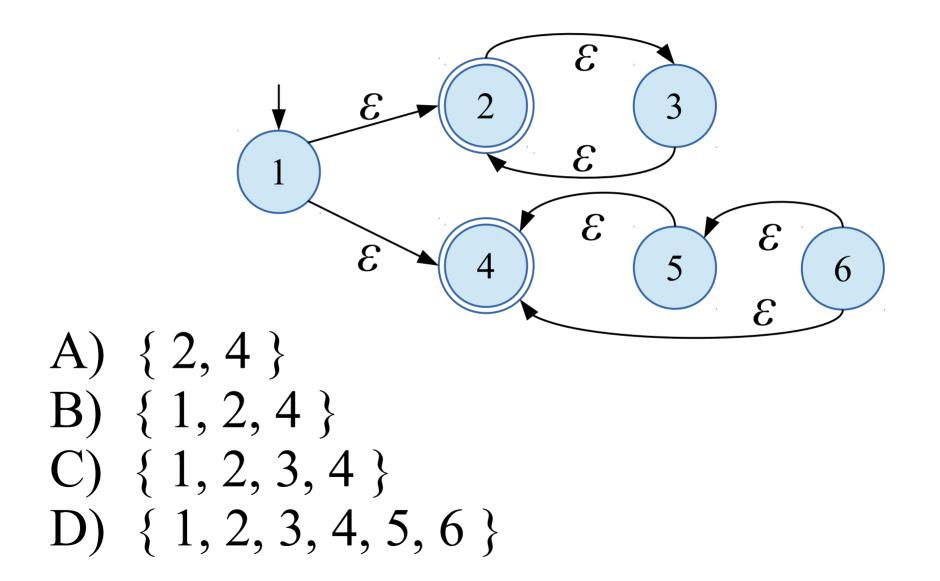


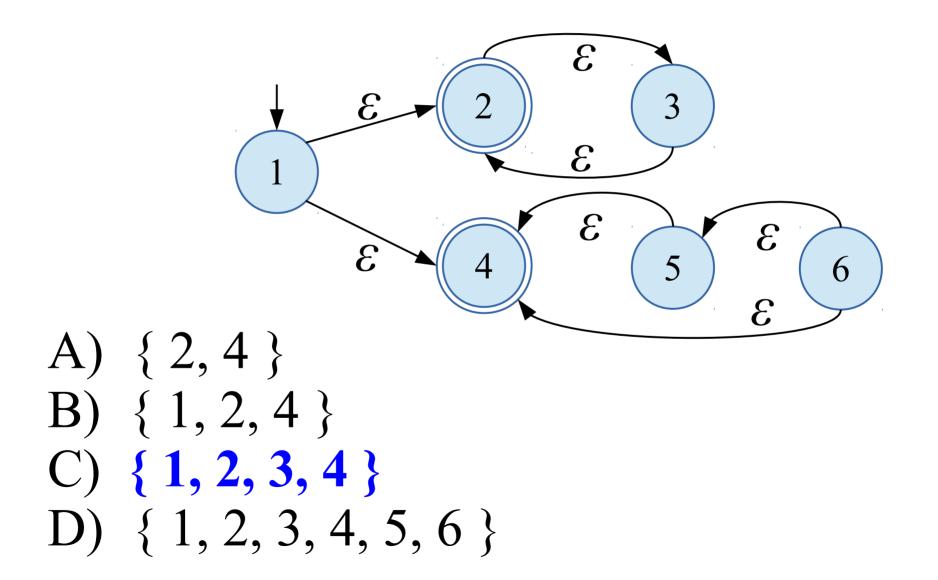
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 2, 3, 4 }

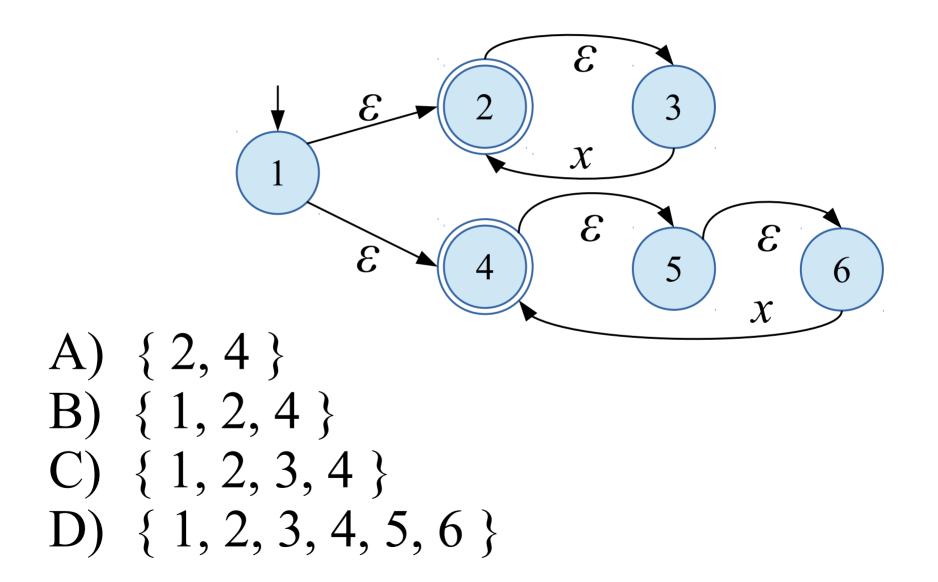


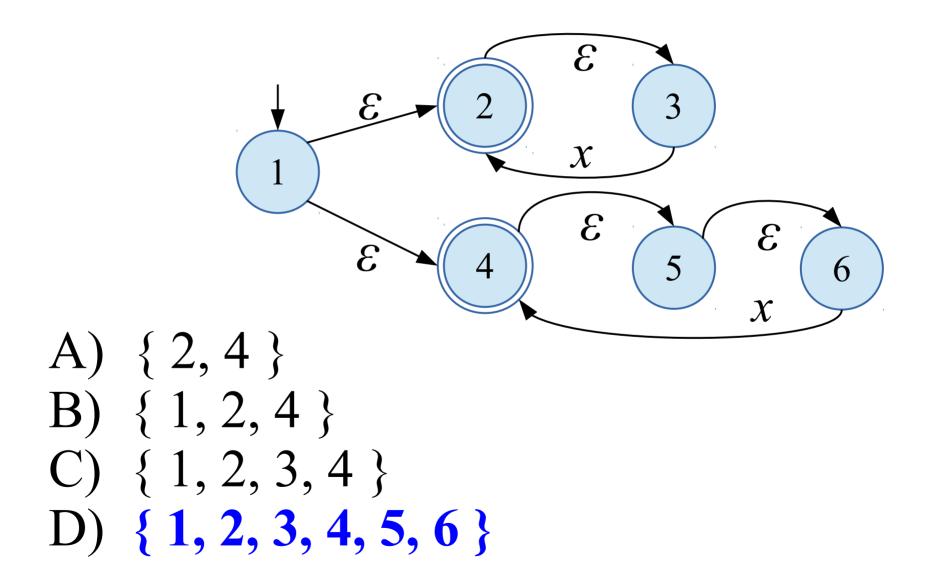


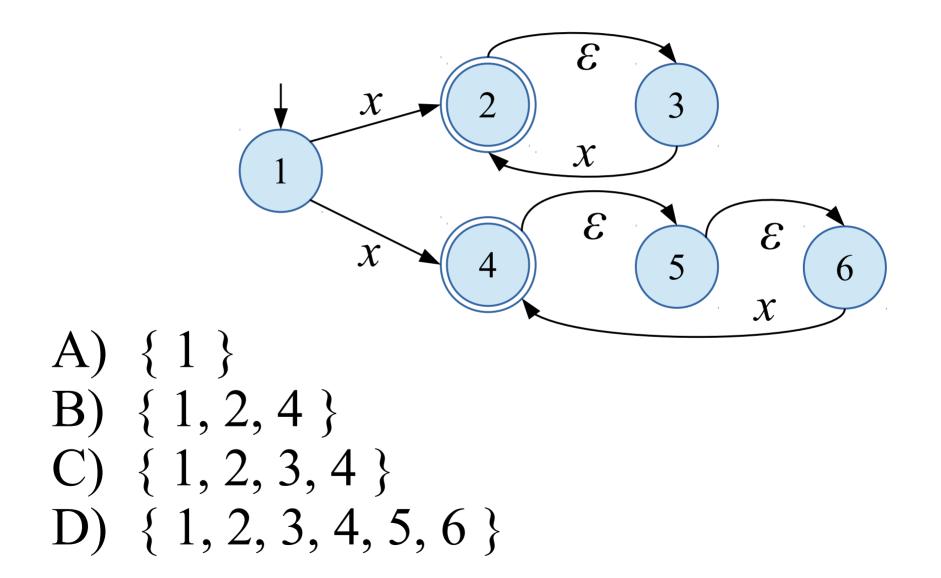
B) { 1, 2, 4 }
C) { 1, 2, 3, 4 }
D) { 2, 3, 4 }

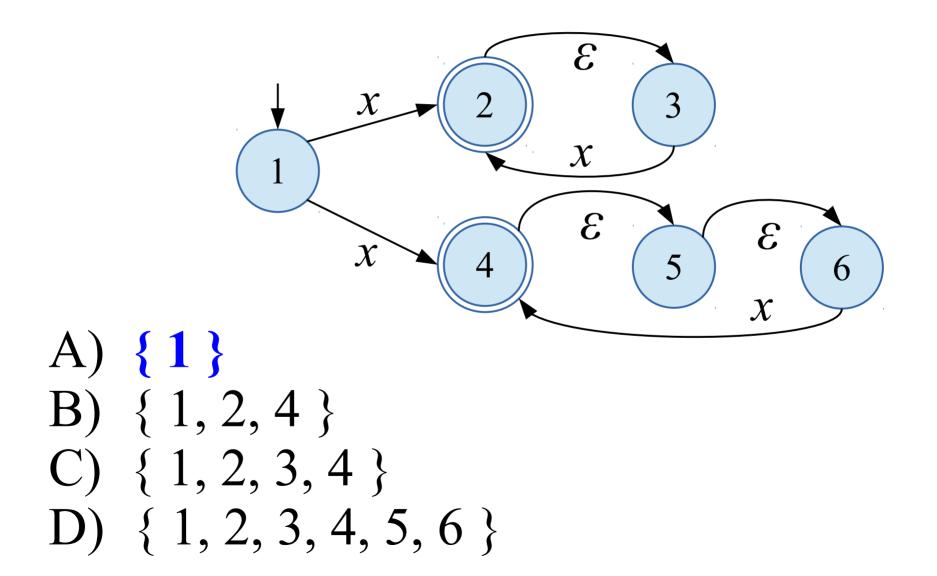


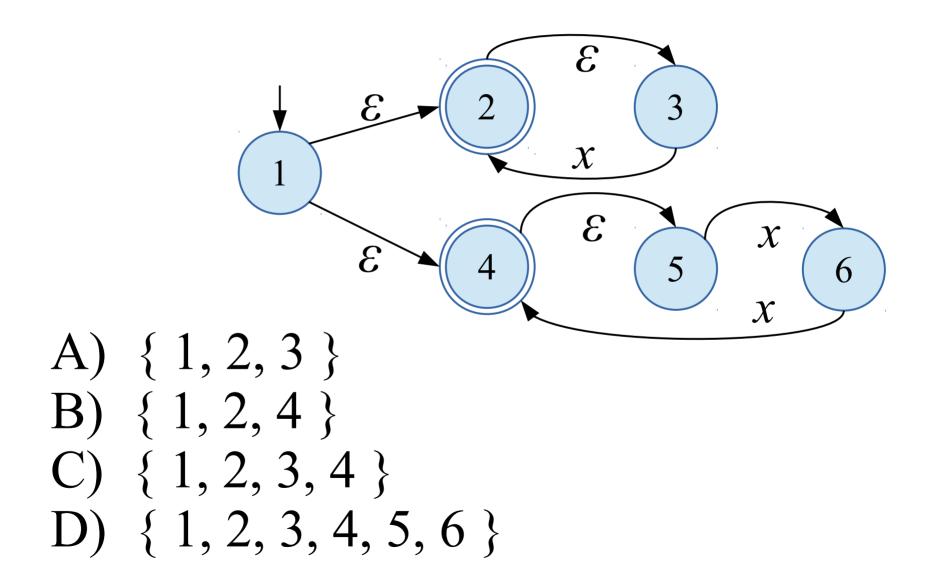


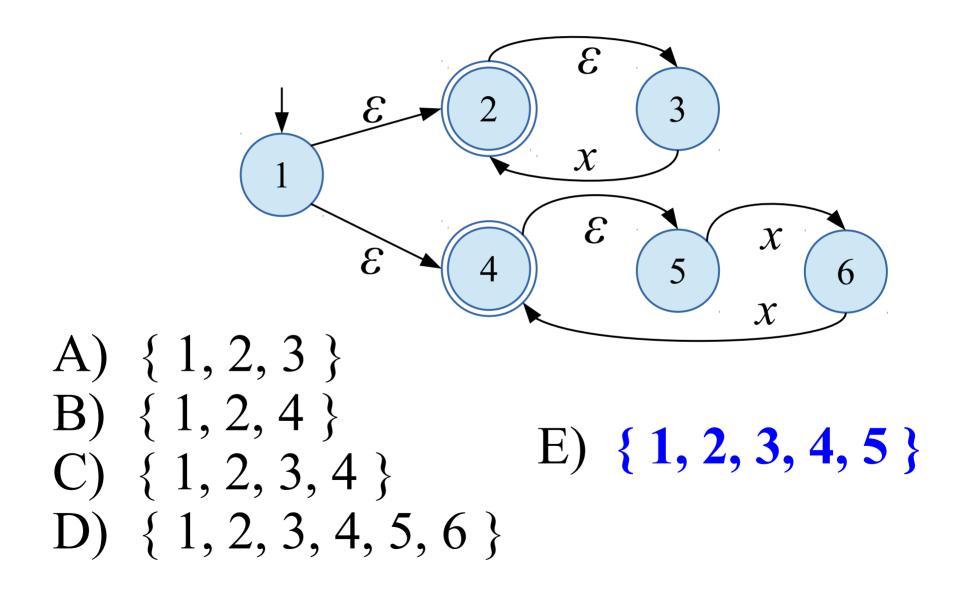












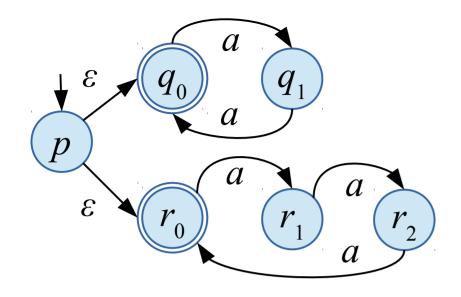
$\varepsilon\text{-NFA}$ to ordinary NFA

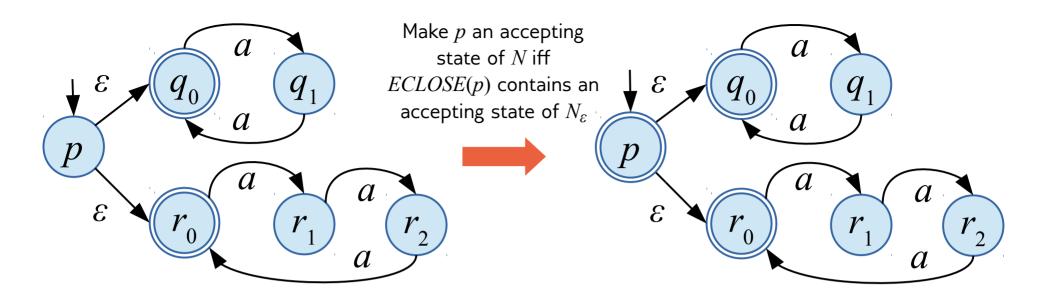
• Converting ε -NFA N_{ε} to ordinary NFA N (short-circuiting ε paths)

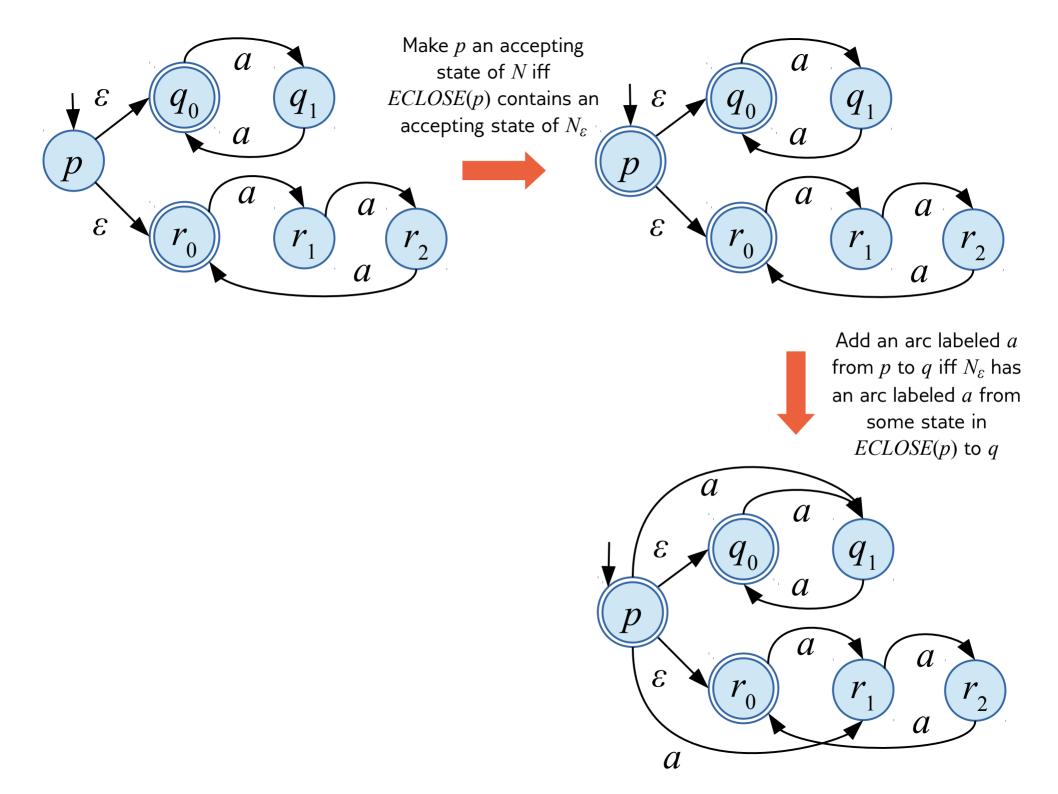
- Converting ε -NFA N_{ε} to ordinary NFA N (short-circuiting ε paths)
 - 1. Make p an accepting state of N iff ECLOSE(p) contains an accepting state of N_{ε}

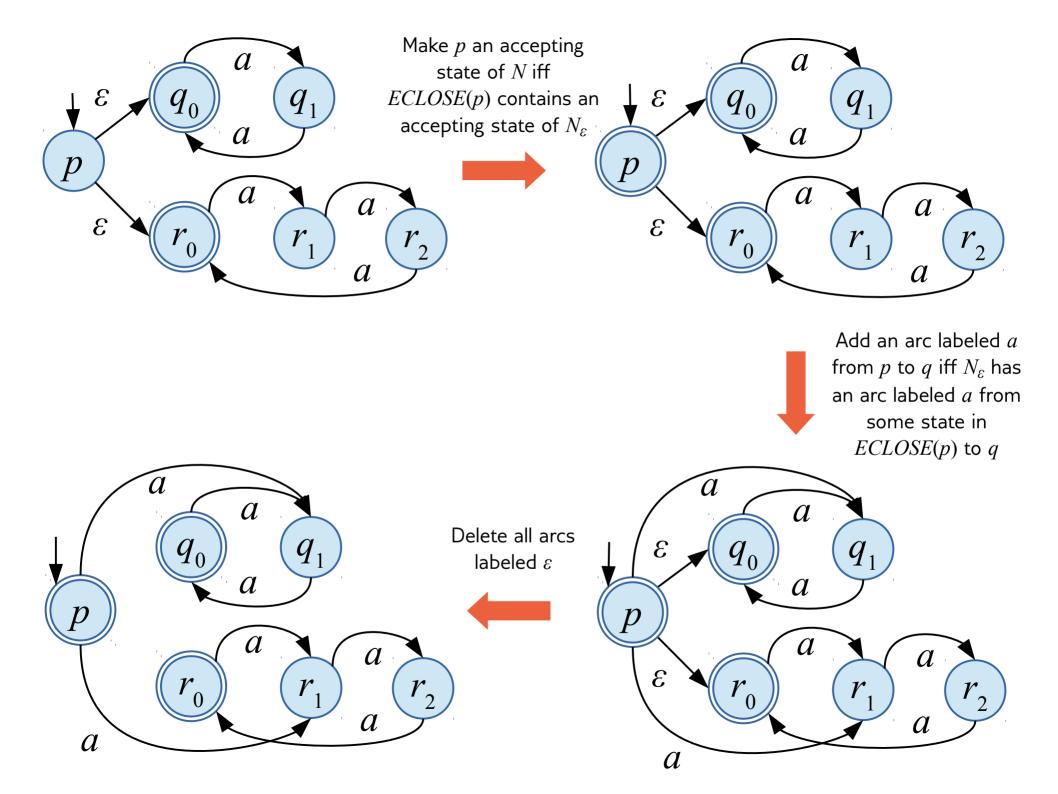
- Converting ε -NFA N_{ε} to ordinary NFA N (short-circuiting ε paths)
 - 1. Make p an accepting state of N iff ECLOSE(p) contains an accepting state of N_{ε}
 - 2. Add an arc labeled *a* from *p* to *q* iff N_{ε} has an arc labeled *a* from some state in ECLOSE(p) to *q*

- Converting ε -NFA N_{ε} to ordinary NFA N (short-circuiting ε paths)
 - 1. Make p an accepting state of N iff ECLOSE(p) contains an accepting state of N_{ε}
 - 2. Add an arc labeled *a* from *p* to *q* iff N_{ε} has an arc labeled *a* from some state in ECLOSE(p) to *q*
 - 3. Delete all arcs labeled ε







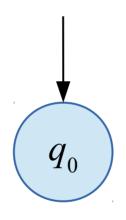


Regular expression to ε -NFA

- Structural induction on regex
 - Construct simple automata for base cases
 - For every higher-order construction, construct equivalent ε -NFA from smaller ε -NFAs

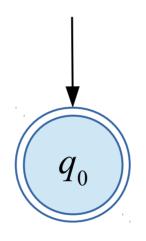
Empty set

Regex: \varnothing



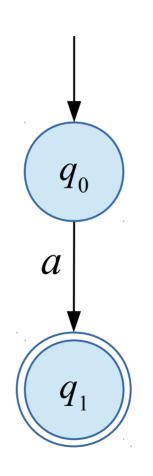
Empty string

Regex: ϵ



Literal character

Regex: a

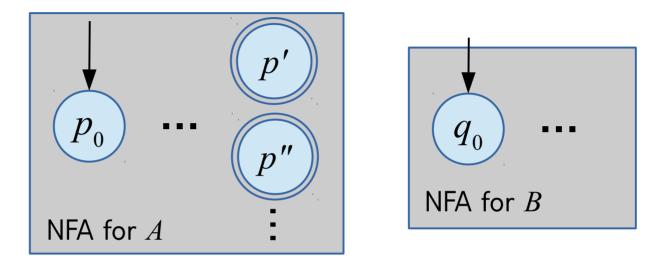


Concatenation

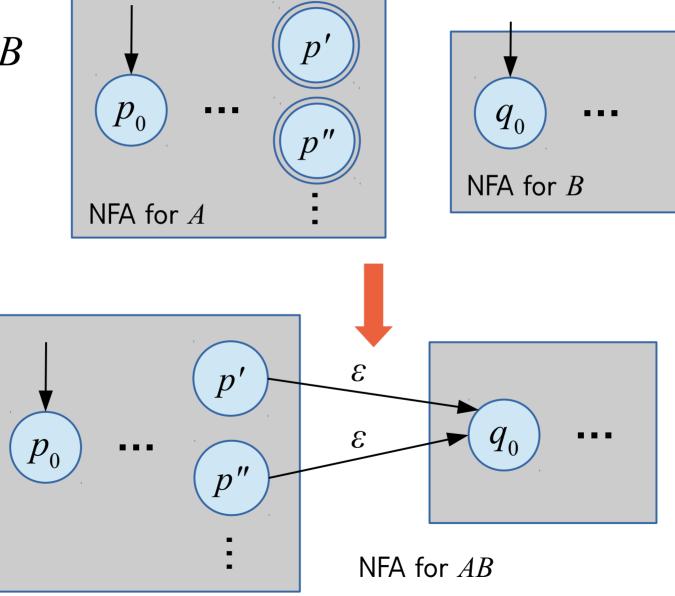
Regex: *AB*

Concatenation

Regex: *AB*



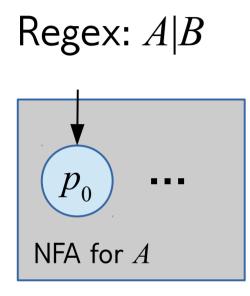
Concatenation

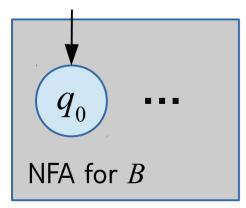


Alternation

Regex: A|B

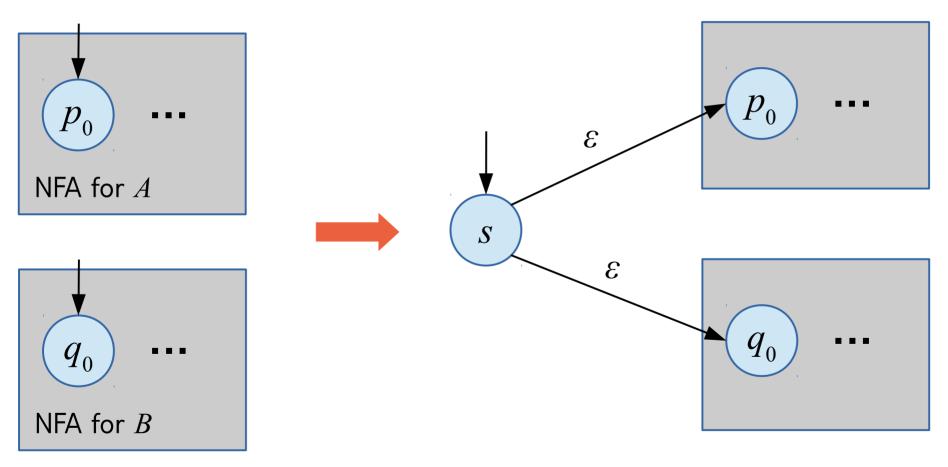
Alternation





Alternation

Regex: A|B



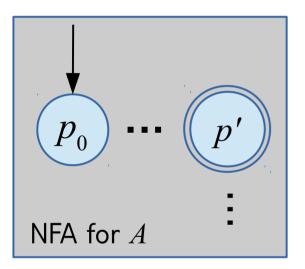
NFA for A|B

Kleene star

Regex: A^*

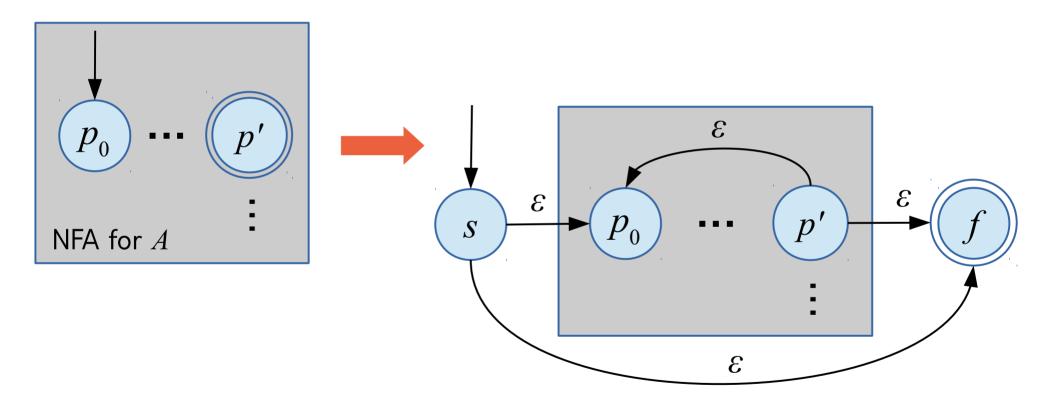
Kleene star

Regex: *A**



Kleene star

Regex: A^*



NFA for A^*