CS 2800: Discrete Structures

Homework 2

Due Monday, September 10, 2012

Please write your netid on the upper right corner of all pages. Grading for all problems will be based on neatness, style, and correctness.

- 1. Which of the following classes of sets are closed under each of the following operations: union, intersection, power set operation? Explain your answer.
 - (a) the class of all finite sets
 - (b) the class of all infinite sets
 - (c) the class of all sets of even cardinality
 - (d) the class of all sets of odd cardinality
- 2. Prove that $S^* = \bigcup_{i=0}^{\infty} S^i$ is the smallest set containing $S \cup \{\epsilon\}$ and closed under concatenation.
- 3. Is there a one-to-one mapping from the set of all finite length strings over the alphabet $\{a, b, \ldots, z\}$ to the set of all finite length strings over the alphabet $\{0, 1\}$? Please explain your reasoning.
- 4. If there is a one-to-one mapping from A to B, and also an onto mapping from A to B, does this imply a one-to-one onto mapping from A to B? Please justify your answer.
- 5. Classify the following sets as countably infinite or not countably infinite. Please give a brief explanation with your answers.
 - (a) all finite subsets of integers
 - (b) all subsets of integers
 - (c) all finite subsets of reals
 - (d) the set of all finite length strings
 - (e) all computer programs
- 6. Let f be an one-to-one mapping from S to T.
 - (a) Give an example of two sets S and T and a mapping f where the fact that S and T are isomorphic implies that f is also onto.
 - (b) Give an example of two sets S and T and a mapping f where the fact that S and T are isomorphic does not imply that f is also onto.