
Faulty Inductions

Part of why I want you to write out your assumptions
carefully is so that you don’t get led into some standard
errors.

Theorem: All women are blondes.

Proof by induction: Let P (n) be the statement: For
any set of n women, if at least one of them is a blonde,
then all of them are.

Basis: Clearly OK.

Inductive step: Assume P (n). Let’s prove P (n + 1).

Given a set W of n + 1 women, one of which is blonde.
Let A and B be two subsets of W of size n, each of which
contains the known blonde, whose union is W .

By the induction hypothesis, each of A and B consists
of all blondes. Thus, so does W . This proves P (n) ⇒
P (n + 1).
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Take W to be the set of women in the world, and let
n = |W |. Since there is clearly at least one blonde in the
world, it follows that all women are blonde!

Where’s the bug?
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Theorem: Every integer > 1 has a unique prime fac-
torization.

[The result is true, but the following proof is not:]

Proof: By strong induction. Let P (n) be the statement
that n has a unique factorization. We prove P (n) for
n > 1.

Basis: P (2) is clearly true.

Induction step: Assume P (2), . . . , P (n). We prove
P (n+1). If n+1 is prime, we are done. If not, it factors
somehow. Suppose n+1 = rs r, s > 1. By the induction
hypothesis, r has a unique factorization Πipi and s has
a unique prime factorization Πjqj. Thus, ΠipiΠjqj is a
prime factorization of n+1, and since none of the factors
of either piece can be changed, it must be unique.

What’s the flaw??
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Problem: Suppose n + 1 = 36. That is, you’ve proved
that every number up to 36 has a unique factorization.
Now you need to prove it for 36.

36 isn’t prime, but 36 = 3 × 12. By the induction hy-
pothesis, 12 has a unique prime factorization, say p1p2p3.
Thus, 36 = 3p1p2p3.

However, 36 is also 4 × 9. By the induction hypothesis,
4 = q1q2 and 9 = r1r2. Thus, 36 = q1q2r1r2.

How do you know that 3p1p2p3 = q1q2r1r2.
(They do, but it doesn’t follow from the induction hy-
pothesis.)

This is a breakdown error. If you’re trying to show some-
thing is unique, and you break it down (as we broke down
n+1 into r and s) you have to argue that nothing changes
if we break it down a different way. What if n + 1 = tu?

• The actual proof of this result is quite subtle
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Theorem: The sum of the internal angles of a regular
n-gon is 180(n − 2) for n ≥ 3.

Proof: By induction. Let P (n) be “the sum of the
internal angles of a regular n-gon is 180(n − 2).” For
n = 3, the result was shown in high school. Assume
P (n); let’s prove P (n + 1). Given a regular (n + 1)-gon,
we can lop off one of the corners:

By the induction hypothesis, the sum of the internal an-
gles of the regular n-gon is 180(n − 2) degrees; the sum
of the internal angles of the triangle is 180 degrees. Thus,
the internal angles of the original (n+1)-gon is 180(n−1).
What’s wrong??

• When you lop off a corner, you don’t get a regular

n-gon.

The fix: Strengthen the induction hypothesis.

• Let P (n) say that the sum of the internal angles of
any n-gon is 180(n − 2).
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Consider 0-1 sequences in which 1’s may not appear con-
secutively, except in the rightmost two positions.

• 010110 is not allowed, but 010011 is

Prove that there are 2n allowed sequences of length n for
n ≥ 1

Why can’t this be right?

“Proof” Let P (n) be the statement of the theorem.

Basis: There are 2 sequences of length 1—0 and 1—and
they’re both allowed.

Inductive step: Assume P (n). Let’s prove P (n + 1).
Take any allowed sequence x of length n. We get a se-
quence of length n + 1 by appending either a 0 or 1 at
the end. In either case, it’s allowed.

• If x ends with a 1, it’s OK, because x1 is allowed to
end with 2 1’s.

Thus, sn+1 = 2sn = 22n = 2n+1.

Where’s the flaw?

• What if x already ends with 2 1’s?

Correct expression involves separating out sequences which
end in 0 and 1 (it’s done in Chapter 5, but I’m not sure
we’ll get to it)
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Inductive Definitions

Example: Define ∑n
k=1 ak inductively (i.e., by induction

on n):

• ∑1
k=1 ak = a1

• ∑n+1
k=1 ak = ∑n

k=1 ak + an+1

The inductive definition avoids the use of · · ·, and thus is
less ambiguous.

Example: An inductive definition of n!:

• 1! = 1

• (n + 1)! = (n + 1)n!

Could even start with 0! = 1.
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Inductive Definitions of Sets

A palindrome is an expression that reads the same back-
wards and forwards:

• Madam I’m Adam

• Able was I ere I saw Elba

What is the set of palindromes over {a, b, c, d}? Two
approaches:

1. The smallest set P such that

(a) P contains a, b, c, d, aa, bb, cc, dd

(b) if x is in P , then so is axa, bxb, cxc, and dxd

Things to think about:

• How do you know that there is a smallest set (one
which is a subset of all others)

• How do you know that it doesn’t contain ab

2. Define Pn, the palindromes of length n, inductively:

• P1 = {a, b, c, d}
• P2 = {aa, bb, cc, dd}
• Pn+1 = {axa, bxb, cxc, dxd|x ∈ Pn−1} for n ≥ 2

Let P ′ = ∪nPn.
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Theorem: P = P ′. (The two approaches define the
same set.)
Proof: Show P ⊆ P ′ and P ′ ⊆ P .
To see that P ⊆ P ′, it suffices to show that

(a) P ′ contains a, b, c, d, aa, bb, cc, dd

(b) if x is in P ′, then so is axa, bxb, cxc, and dxd

(since P is the smallest set with these properties).

Clearly P1 ∪ P2 satisfies (1), so P ′ does. And if x ∈ P ′,
then x ∈ Pn for some n, in which case axa, bxb, cxc, and
dxd are all in Pn+2 and hence in P ′. Thus, P ⊆ P ′.

To see that P ′ ⊆ P , we prove by strong induction that
Pn ⊆ P for all n. Let P (n) be the statement “Pn ⊆ P .”

Basis: P1, P2 ⊆ P : Obvious.

Suppose P1, . . . , Pn ⊆ P . If n ≥ 2, the fact that Pn+1 ⊆
P follows immediately from (b). (Actually, all we need is
the fact that Pn−1 ⊆ P , which follows from the (strong)
induction hypothesis.)

Thus, P ′ = ∪nPn ⊆ P .
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Recall that the set of palindromes is the smallest set P
such that

(a) P contains a, b, c, d, aa, bb, cc, dd

(b) if x is in P , then so is axa, bxb, cxc, and dxd

“Smallest” is not in terms of cardinality.

• P is guaranteed to be infinite

“Smallest” is in terms of the subset relation.

Here’s a set that satisfies (a) and (b) and isn’t the small-
est:

Define Qn inductively:

• Q1 = {a, b, c, d}
• Q2 = {aa, bb, cc, dd, ab}
• Qn+1 = {axa, bxb, cxc, dxd|x ∈ Qn−1}, n ≥ 2

Let Q = ∪nQn.

It’s easy to see that Q satisfies (a) and (b), but it isn’t
the smallest set to do so.
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The Sorites Paradox

If a pile of sand has 1, 000, 000 grains of sand, it’s a heap.

Removing one grain of sand from a heap leaves 1 heap.

Therefore, by induction, if a pile of sand has only one
grain, it’s also a heap.

Prove by induction on n that if a pile of sand has 1, 000, 000−
n grains of sand, it’s a heap.

Where’s the bug?

• This leads to a whole topic in the philosophy of lan-
guage called “vagueness”
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The Trust Game

Consider a game where, after n steps, there are piles of
money on the table:

• The big one has $2n+1; the small one has $2n−1

There are two players, Alice and Bob. Initially Alice is in
charge. She can either quit the game or continue

• If she quits, she gets the money in the bigger pile ($4)
and Bob gets the money in the smaller pile ($1)

• If she continues, Bob is in charge

• If he quits, he gets the money in the bigger pile ($8),
Alice gets the money in the smaller pile ($2).

• If he continues, Alice is in charge, and so on.

• The game goes on for 20 steps;

◦ if they’re still playing then, Bob gets $221 (> $2,000,000);
Alice gets $219 (≈ $500,000)

What should you do?

• Should you trust the other player to keep playing, or
take your money and run?
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In the game theory literature, this is called the centipede

game.

What should Alice do if they’re still playing at step 19?

• If she quits, she gets $220 (about $1,000,000); if she
continues she gets only $219).

• So Alice will quit, which means Bob will get $218

So what should Bob do if they’re still playing at step 18?

• If he quits, he gets $219; if he continues, most likely
he’ll get $218, since Alice will quit at step 19.

• So Bob quts, which means Alice will get $216.

Continuing this way (by backwards induction), Alice
quits at step 1 and gets $4!

Under a specific model of rationality, quitting at the first
step is the only right thing to do.

• It’s the only Nash equilibrium

In practice (with smaller amounts of money), people play
for a little while before quitting.
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The muddy children puzzle
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We can prove by induction on k that if k children have
muddy foreheads, they say “yes” on the kth question.
It appears as if the father didn’t tell the children any-
thing they didn’t already know. Yet without the father’s
statement, they could not have deduced anything.
So what was the role of the father’s statement?
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Homework

• Grades are now posted on CMS

• Solutions will be posted shortly.

• It’s a violation of academic integrity to copy previous
years’ solutions

Homework questions/complaints?

1. Read the solutions first!

2. Talk to the person who graded it (check initials)

3. If (1) and (2) don’t work, talk to me.

Further comments:

• There’s no statute of limitations on grade changes

◦ but you’re better off asking questions soon

• 10/12 homeworks count. Each is roughly worth 50
points, and homework is 35% of your final grade.

◦ 16 homework points = 1% on your final grade

• We’re grading about 150 homeworks and graders are
not mind readers. It’s your problem to write clearly.

• Don’t forget to staple your homework pages together,
add the cover sheet, and put your name on clearly.
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A Digression: A Bad Proof

Prove log(x/y) = log(x) − log(y)

Proof:

log(x/y) = log(x) − log(y)
log(x) + log(1/y) = log(x) − log(y)
log(x) + log(y−1) = log(x) − log(y)
log(x) − log(y) = log(x) − log(y)

What’s wrong?
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Algorithmic number theory

Number theory used to be viewed as the purest branch
of pure mathematics.

• Now it’s the basis for most modern cryptography.

• Absolutely critical for e-commerce

◦ How do you know your credit card number is safe?

Goal:

• To give you a basic understanding of the mathematics
behind the RSA cryptosystem

◦ Need to understand how prime numbers work
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Division

For a, b ∈ Z, a 6= 0, a divides b if there is some c ∈ Z
such that b = ac.

• Notation: a | b

• Examples: 3 | 9, 3 6 | 7

If a | b, then a is a factor of b, b is a multiple of a.

Theorem 1: If a, b, c ∈ Z, then

1. if a | b and a | c then a | (b + c).

2. If a | b then a | (bc)

3. If a | b and b | c then a | c (divisibility is transitive).

Proof: How do you prove this? Use the definition!

• E.g., if a | b and a | c, then, for some d1 and d2,

b = ad1 and c = ad2.

• That means b + c = a(d1 + d2)

• So a | (b + c).

Other parts: homework.

Corollary 1: If a | b and a | c, then a | (mb + nc) for
any integers m and n.
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The division algorithm

Theorem 2: For a ∈ Z and d ∈ N , d > 0, there exist
unique q, r ∈ Z such that a = q · d + r and 0 ≤ r < d.

• r is the remainder when a is divided by d

Notation: r ≡ a (mod d); a mod d = r

Examples:

• Dividing 101 by 11 gives a quotient of 9 and a remain-
der of 2 (101 ≡ 2 (mod 11); 101 mod 11 = 2).

• Dividing 18 by 6 gives a quotient of 3 and a remainder
of 0 (18 ≡ 0 (mod 6); 18 mod 6 = 0).

Proof: Let q = ba/dc and define r = a − q · d.

• So a = q · d + r with q ∈ Z and 0 ≤ r < d (since
q · d ≤ a).

But why are q and d unique?

• Suppose q · d + r = q′ · d + r′ with q′, r′ ∈ Z and
0 ≤ r′ < d.

• Then (q′ − q)d = (r − r′) with −d < r − r′ < d.

• The lhs is divisible by d so r = r′ and we’re done.
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Primes

• If p ∈ N , p > 1 is prime if its only positive factors
are 1 and p.

• n ∈ N is composite if n > 1 and n is not prime.

◦ If n is composite then a | n for some a ∈ N with
1 < a < n

◦ Can assume that a ≤ √
n.

∗ Proof: By contradiction:
Suppose n = bc, b >

√
n, c >

√
n. But then

bc > n, a contradiction.

Primes: 2, 3, 5, 7, 11, 13, . . .
Composites: 4, 6, 8, 9, . . .
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