
Formalizing Probability

What do we assign probability to?
Intuitively, we assign them to possible events (things that
might happen, outcomes of an experiment)

Formally, we take a sample space to be a set.

• Intuitively, the sample space is the set of possible out-
comes, or possible ways the world could be.

An event is a subset of a sample space.

We assign probability to events: that is, to subsets of a
sample space.

Sometimes the hardest thing to do in a problem is to
decide what the sample space should be.

• There’s often more than one choice

• A good thing to do is to try to choose the sample
space so that all outcomes (i.e., elements) are equally
likely

◦ This is not always possible or reasonable
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Choosing the Sample Space

Example 1: We toss a coin. What’s the sample space?

• Most obvious choice: {heads, tails}
• Should we bother to model the possibility that the

coin lands on edge?

• What about the possibility that somebody snatches
the coin before it lands?

• What if the coin is biased?

Example 2: We toss a die. What’s the sample space?

Example 3: Two distinguishable dice are tossed to-
gether. What’s the sample space?

• (1,1), (1,2), (1,3), . . . , (6,1), (6,2), . . . , (6,6)

What if the dice are indistinguishable?

Example 4: You’re a doctor examining a seriously ill
patient, trying to determine the probability that he has
cancer. What’s the sample space?

Example 5: You’re an insurance company trying to
insure a nuclear power plant. What’s the sample space?
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Probability Measures

A probability measure assigns a real number between 0
and 1 to every subset of (event in) a sample space.

• Intuitively, the number measures how likely that event
is.

• Probability 1 says it’s certain to happen; probability
0 says it’s certain not to happen

• Probability acts like a weight or measure. The prob-
ability of separate things (i.e., disjoint sets) adds up.

Formally, a probability measure Pr on S is a function
mapping subsets of S to real numbers such that:

1. For all A ⊆ S, we have 0 ≤ Pr(A) ≤ 1

2. Pr(∅) = 0; Pr(S) = 1

3. If A and B are disjoint subsets of S (i.e., A∩B = ∅),
then Pr(A ∪B) = Pr(A) + Pr(B).

It follows by induction that if A1, . . . , Ak are pairwise
disjoint, then

Pr(∪k
i=1Ai) = Σk

i Pr(Ai).

• This is called finite additivity; it’s actually more stan-
dard to assume a countable version of this, called
countable additivity
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In particular, this means that if A = {e1, . . . , ek}, then

Pr(A) =
k∑

i=1
Pr(ei).

In finite spaces, the probability of a set is determined by
the probability of its elements.
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Equiprobable Measures

Suppose S has n elements, and we want Pr to make each
element equally likely.

• Then each element gets probability 1/n

• Pr(A) = |A|/n
In this case, Pr is called an equiprobable measure.

Example 1: In the coin example, if you think the coin
is fair, and the only outcomes are heads and tails, then
we can take S = {heads,tails}, and
Pr(heads) = Pr(tails) = 1/2.

Example 2: In the two-dice example where the dice are
distinguishable, if you think both dice are fair, then we
can take Pr((i, j)) = 1/36.

• Should it make a difference if the dice are indistin-
guishable?
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Equiprobable measures on infinite sets

Defining an equiprobable measure on an infinite set can
be tricky.

Theorem: There is no equiprobable measure on the
positive integers.

Proof: By contradiction. Suppose Pr is an equiprobable
measure on the positive integers, and Pr(1) = ε > 0.

There must be some N such that ε > 1/N .
Since Pr(1) = · · · = Pr(N) = ε, we have

Pr({1, . . . , N}) = Nε > 1 — a contradiction

But if Pr(1) = 0, then Pr(S) = Pr(1) + Pr(2) + · · · = 0.
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Some basic results

How are the probability of E and E related?

• How does the probability that the dice lands either 2
or 4 (i.e., E = {2, 4}) compare to the probability that
the dice lands 1, 3, 5, or 6 (E = {1, 3, 5, 6})

Theorem 1: Pr(E) = 1− Pr(E).

Proof: E and E are disjoint, so that

Pr(E ∪ E) = Pr(E) + Pr(E).

But E ∪ E = S, so Pr(E ∪ E) = 1.
Thus Pr(E) + Pr(E) = 1, so

Pr(E) = 1− Pr(E).
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Theorem 2: Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B).

A = (A−B) ∪ (A ∩B)
B = (B − A) ∪ (A ∩B)
A ∪B = (A−B) ∪ (B − A) ∪ (A ∩B)

So

Pr(A) = Pr(A−B) + Pr(A ∩B)
Pr(B) = Pr(B − A) + Pr(A ∩B)
Pr(A ∪B) = Pr(A−B) + Pr(B − A) + Pr(A ∩B)

The result now follows.

Remember the Inclusion-Exclusion Rule?

|A ∪B| = |A| + |B| − |A ∩B|

This follows easily from Theorem 2, if we take Pr to be
an equiprobable measure. We can also generalize to arbi-
trary unions.
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Disclaimer

• Probability is a well defined mathematical theory.

• Applications of probability theory to “real world” prob-
lems is not.

• Choosing the sample space, the events and the prob-
ability function requires a “leap of faith”.

• We cannot prove that we chose the right model but
we can argue for that.

• Some examples are easy some are not:

◦ Flipping a coin or rolling a die.

◦ Playing a lottery game.

◦ Guessing in a multiple choice test.

◦ Determining whether or not the patient has AIDS
based on a test.

◦ Does the patient have cancer?
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Conditional Probability

One of the most important features of probability is that
there is a natural way to update it.

Example: Bob draws a card from a 52-card deck. Ini-
tially, Alice considers all cards equally likely, so her prob-
ability that the ace of spades was drawn is 1/52. Her
probability that the card drawn was a spade is 1/4.

Then she sees that the card is black. What should her
probability now be that

• the card is the ace of spades?

• the card is a spade?

A reasonable approach:

• Start with the original sample space

• Eliminate all outcomes (elements) that you now con-
sider impossible, based on the observation (i.e., assign
them probability 0).

• Keep the relative probability of everything else the
same.

◦ Renormalize to get the probabilities to sum to 1.
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What should the probability of B be, given that you’ve
observed A? According to this recipe, it’s

Pr(B | A) =
Pr(A ∩B)

Pr(A)

Pr(A♠ | black) = (1/52)/(1/2) = 1/26
Pr(spade | black) = (1/4)/(1/2) = 1/2.

A subtlety:

• What if Alice doesn’t completely trust Bob? How do
you take this into account? Two approaches:

(1) Enlarge sample space to allow more observations.

(2) Jeffrey’s rule:

Pr(A♠ | black) · Pr(Bob telling the truth)+
Pr(A♠ | red) · Pr(Bob lying).
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The second-ace puzzle

Alice gets two cards from a deck with four cards:
A♠, 2♠, A♥, 2♥.

A♠ A♥ A♠ 2♠ A♠ 2♥

A♥ 2♠ A♥ 2♥ 2♠ 2♥

Alice then tells Bob “I have an ace”.

She then says “I have the ace of spades”.

The situation is similar if if Alice says “I have the ace of
hearts”.

Puzzle: Why should finding out which particular ace it is
raise the conditional probability of Alice having two aces?
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The Monty Hall Puzzle

• You’re on a game show and given a choice of three
doors.

◦ Behind one is a car; behind the others are goats.

• You pick door 1.

• Monty Hall opens door 2, which has a goat.

• He then asks you if you still want to take what’s be-
hind door 1, or to take what’s behind door 3 instead.

Should you switch?
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Justifying Conditioning

Suppose that after learning B, we update Pr to PrB.
Some reasonable assumptions:

C1. PrB is a probability distribution

C2. PrB(B) = 1

C3. If C1, C2 ⊆ B, then PrB(C1)/PrB(C2) = Pr(C1)/ Pr(C2).

◦ The relative probability of subsets of B doesn’t
change after learning B.

Theorem: C1–C3 force conditioning:

PrB(A) = Pr(A ∩B)/ Pr(B).

Proof: By C1, PrB(B) + PrB(B) = 1.
By C2, PrB(B) = 1, so PrB(B) = 0.

General property of probability:
If C ⊆ C ′, then PrB(C) ≤ PrB(C ′) (Why?)
So if C ⊆ B, then PrB(C) = 0

By C1,

PrB(A) = PrB(A ∩B) + PrB(A ∩B) = PrB(A ∩B).

Since A ∩B ⊆ B, by C3,

PrB(A ∩B)/PrB(B) = Pr(A ∩B)/ Pr(B).

By C3, PrB(B) = 1, so PrB(A∩B) = Pr(A∩B)/ Pr(B).
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The Second-Child Problem

Suppose that any child is equally likely to be male or
female, and that the sex of any one child is independent
of the sex of the other. You have an acquaintance and
you know he has two children, but you don’t know their
sexes. Consider the following four cases:

1. You visit the acquaintance, and a boy walks into the
room. The acquaintance says “That’s my older child.”

2. You visit the acquaintance, and a boy walks into the
room. The acquaintance says “That’s one of my chil-
dren.”

3. The acquaintance lives in a culture, where male chil-
dren are always introduced first, in descending order
of age, and then females are introduced. You visit the
acquaintance, who says “Let me introduce you to my
children.” Then he calls “John [a boy], come here!”

4. You go to a parent-teacher meeting. The principal
asks everyone who has at least one son to raise their
hands. Your acquaintance does so.

In each case, what is the probability that the acquain-
tance’s second child is a boy?

• The problem is to get the right sample space
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Independence

Intuitively, events A and B are independent if they have
no effect on each other.

This means that observing A should have no effect on
the likelihood we ascribe to B, and similarly, observing
B should have no effect on the likelihood we ascribe to
A.

Thus, if Pr(A) 6= 0 and Pr(B) 6= 0 and A is independent
of B, we would expect

Pr(B|A) = Pr(B) and Pr(A|B) = Pr(A).

Interestingly, one implies the other.

Pr(B|A) = Pr(B) iff Pr(A ∩B)/ Pr(A) = Pr(B) iff

Pr(A ∩B) = Pr(A)× Pr(B).

Formally, we say A and B are (probabilistically) inde-
pendent if

Pr(A ∩B) = Pr(A)× Pr(B).

This definition makes sense even if Pr(A) = 0 or
Pr(B) = 0.
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Example

Alice has two coins, a fair one f and a loaded one l.

• l’s probability of landing H is p > 1/2.

Alice picks f and flips it twice.

• What is the sample space?

Ω = {(H, H), (H, T ), (T, H), (T, T )}.

• What is Pr?

• By symmetry this should be an equiprobable space.

Let H1 = {(H, H), (H, T )} and let H2 = {(H, H), (T, H)}.
H1 and H2 are independent:

• H1 = {(H, H), (H, T )} ⇒ Pr(H1) = 2/4 = 1/2.

• Similarly, P (H2) = 1/2.

• H1 ∩H2 = {(H, H)} ⇒ Pr(H1 ∩H2) = 1/4.

• So, Pr(H1 ∩H2) = Pr(H1) · Pr(H2).
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Alice next picks l and flips it twice.

• The sample space is the same as before:

Ω = {(H, H), (H, T ), (T, H), (T, T )}.

• We now define Pr by assuming the flips are indepen-
dent:

◦ Pr{(H, H)} = Pr(H1 ∩H2) := p2

◦ Pr{(H, T )} = Pr(H1 ∩ H̄2) := p(1− p)

◦ Pr{(T, H)} = Pr(H̄1 ∩H2) := (1− p)p

◦ Pr{(T, T )} = Pr(H̄1 ∩ H̄2) := (1− p)2.

• H1 and H2 are now independent by construction:

Pr(H1) = Pr{(H, H), (H, T )} =
= p2 + p(1− p) = p[p + (1− p)] = p.

Similarly, Pr(H2) = Pr{(H, H), (T, H)} = p
Pr(H1 ∩H2) = Pr(H, H) = p2.

• For either coin, the two flips are independent.

What if Alice randomly picks a coin and flips it twice?

• What is the sample space?

Ω = {(f, (H, H)), (f, (H, T )), (f, (T, H)), (f, (T, T )),
(l, (H, H)), (l, (H, T )), (l, (T, H)), (l, (T, T ))}.
The sample space has to specify which coin is picked!
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• How do we construct Pr?

• E.g.: Pr(f, H,H) should be probability of getting the
fair times the probability of getting heads with the fair
coin: 1/2× 1/4

• Follows from the following general result:

Pr(A ∩B) = Pr(B|A) Pr(A)

• So with F , L denoting the events f (respectively, l)
was picked,

Pr{(f, (H, H))} = Pr(F ∩ (H1 ∩H2))
= Pr(H1 ∩H2|F ) Pr(F )
= 1/2 · 1/2 · 1/2.

Analogously, we have for example

Pr{(l, (H, T ))} = p(1− p) · 1/2.
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Are H1 and H2 independent now?

Claim. Pr(A) = Pr(A|E) Pr(E) + Pr(A|Ē) Pr(Ē)

Proof. A = (A ∩ E) ∪ (A ∩ Ē), so

Pr(A) = Pr(A ∩ E) + Pr(A ∩ Ē).

Pr(H1) = Pr(H1|F ) Pr(F )+Pr(H1|L) Pr(L) = p/2+1/4.

Similarly, Pr(H2) = p/2 + 1/4.

However,

Pr(H1 ∩H2)
= Pr(H1 ∩H2|F ) Pr(F ) + Pr(H1 ∩H2|L) Pr(L)
= p2/2 + 1/4 · 1/2

6= (p/2 + 1/4)2

= Pr(H1) · Pr(H2).

So H1 and H2 are dependent events.
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Probability Trees

Suppose that the probability of rain tomorrow is .7. If it
rains, then the probability that the game will be cancelled
is .8; if it doesn’t rain, then the probability that it will
be cancelled is .1. What is the probability that the game
will be played?

The situation can be described by a tree:

Similar trees can be used to describe

• Sequential decisions

• Randomized algorithms
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Bayes’ Theorem

Bayes Theorem: Let A1, . . . , An be mutually exclu-
sive and exhaustive events in a sample space S.

• That means A1 ∪ . . . ∪ An = S, and the Ai’s are
pairwise disjoint: Ai ∩ Aj = ∅ if i 6= j.

Let B be any event in S. Then

Pr(Ai|B) =
Pr(Ai) Pr(B|Ai)

Σn
j=1 Pr(Aj) Pr(B|Aj)

.

Proof:

B = B ∩ S = B ∩ (∪n
j=1Aj) = ∪n

i=1(B ∩ Aj).

Therefore, Pr(B) = Σn
j=1 Pr(B ∩ Aj).

Next, observe that Pr(B|Ai) = Pr(Ai∩B)/ Pr(Ai). Thus,

Pr(Ai ∩B) = Pr(B|Ai) Pr(Ai).

Therefore,

Pr(Ai|B) = Pr(Ai∩B)
Pr(B)

= Pr(B|Ai) Pr(Ai)
Σn

j=1 Pr(B∩Aj)

= Pr(B|Ai) Pr(Ai)
Σn

j=1 Pr(B|Aj) Pr(Aj)
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Example

In a certain county, 60% of registered voters are Repub-
licans, 30% are Democrats, and 10% are Independents.
40% of Republicans oppose increased military spending,
while 65% of the Democrats and 55% of the Indepen-
dents oppose it. A registered voter writes a letter to the
county paper, arguing against increased military spend-
ing. What is the probability that this voter is a Demo-
crat?

S = {registered voters}
A1 = {registered Republicans}
A2 = {registered Democrats}
A3 = {registered independents}
B = {voters who oppose increased military spending}

We want to know Pr(A2|B).

We have

Pr(A1) = .6 Pr(A2) = .3 Pr(A3) = .1
Pr(B|A1) = .4 Pr(B|A2) = .65 Pr(B|A3) = .55
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Using Bayes’ Theorem, we have:

Pr(A2|B) = Pr(B|A2)×Pr(A2)
Pr(B|A1)×Pr(A1)+Pr(B|A2)×Pr(A2)+Pr(B|A3)×Pr(A3)

= .65×.3
(.4×.6)+(.65×.3)+(.55×.1)

= .195
.49

≈ .398
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AIDS

Suppose we have a test that is 99% effective against AIDS.
Suppose we also know that .3% of the population has
AIDS. What is the probability that you have AIDS if you
test positive?

S = {all people} (in North America??)
A1 = {people with AIDS}
A2 = {people who don’t have AIDS} (A2 = A1)
B = {people who test positive}

Pr(A1) = .003 Pr(A2) = .997

Since the test is 99% effective:

Pr(B|A1) = .99 Pr(B|A2) = .01

Using Bayes’ Theorem again:

Pr(A1|B) = .99×.003
(.99×.003)+(.01×.997)

≈ .003
.003+.01

≈ .23
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