
Permutations

A permutation of n things taken r at a time, written
P (n, r), is an arrangement in a row of r things, taken
from a set of n distinct things. Order matters.

Example 6: How many permutations are there of 5
things taken 3 at a time?

Answer: 5 choices for the first thing, 4 for the second,
3 for the third: 5× 4× 3 = 60.

• If the 5 things are a, b, c, d, e, some possible permuta-
tions are:

abc abd abe acb acd ace
adb adc ade aeb aec aed
. . .

In general

P (n, r) =
n!

(n− r)!
= n(n− 1) · · · (n− r + 1)
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Combinations

A combination of n things taken r at a time, written
C(n, r) or

(
n
r

)
(“n choose r”) is any subset of r things

from n things. Order makes no difference.

Example 7: How many ways are there of choosing 3
things from 5?

Answer: If order mattered, then it would be 5× 4× 3.
Since order doesn’t matter,

abc, acb, bac, bca, cab, cba

are all the same.

• For way of choosing three elements, there are 3! = 6
ways of ordering them.

Therefore, the right answer is (5× 4× 3)/3! = 10:

abc abd abe acd ace
ade bcd bce bde cde

In general

C(n, r) =
n!

(n− r)!r!
= n(n− 1) · · · (n− r + 1)/r!
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More Examples

Example 8: How many full houses are there in poker?

• A full house has 5 cards, 3 of one kind and 2 of an-
other.

• E.g.: 3 5’s and 2 K’s.

Answer: You need to find a systematic way of counting:

• Choose the denomination for which you have three of
a kind: 13 choices.

• Choose the three: C(4, 3) = 4 choices

• Choose the denomination for which you have two of
a kind: 12 choices

• Choose the two: C(4, 2) = 6 choices.

Altogether, there are:

13× 4× 12× 6 = 3744 choices
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0!

It’s useful to define 0! = 1.

Why?

1. Then we can inductively define

(n + 1)! = (n + 1)n!,

and this definition works even taking 0 as the base
case instead of 1.

2. A better reason: Things work out right for P (n, 0)
and C(n, 0)!

How many permutations of n things from n are there?

P (n, n) =
n!

(n− n)!
=

n!

0!
= n!

How many ways are there of choosing n out of n?
0 out of n?

nn
 =

n!

n!0!
= 1

n0
 =

n!

0!n!
= 1
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More Questions

Q: How many ways are there of choosing k things from
{1, . . . , n} if 1 and 2 can’t both be chosen? (Suppose
n, k ≥ 2.)

A: First find all the ways of choosing k things from n—
C(n, k). Then subtract the number of those ways in
which both 1 and 2 are chosen:

• This amounts to choosing k−2 things from {3, . . . , n}:
C(n− 2, k − 2).

Thus, the answer is

C(n, k)− C(n− 2, k − 2)

Q: What if order matters?

A: Have to compute how many ways there are of picking
k things, two of which are 1 and 2.

P (n, k)− k(k − 1)P (n− 2, k − 2)
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Q: How many ways are there to distribute four distinct
balls evenly between two distinct boxes (two balls go in
each box)?

A: All you need to decide is which balls go in the first
box.

C(4, 2) = 6

Q: What if the boxes are indistinguishable?

A: C(4, 2)/2 = 3.
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Combinatorial Identities

There all lots of identities that you can form using C(n, k).
They seem mysterious at first, but there’s usually a good
reason for them.

Theorem 1: If 0 ≤ k ≤ n, then

C(n, k) = C(n, n− k).

Proof:

C(n, k) =
n!

k!(n− k)!
=

n!

(n− k)!(n− (n− k))!
= C(n, n−k)

Q: Why should choosing k things out of n be the same
as choosing n− k things out of n?

A: There’s a 1-1 correspondence. For every way of choos-
ing k things out of n, look at the things not chosen: that’s
a way of choosing n− k things out of n.

This is a better way of thinking about Theorem 1 than
the combinatorial proof.
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Theorem 2: If 0 < k < n thennk
 =

n− 1

k

 +

n− 1

k − 1



Proof 1: (Combinatorial) Suppose we want to choose k
objects out of {1, . . . , n}. Either we choose the last one
(n) or we don’t.

1. How many ways are there of choosing k without choos-
ing the last one? C(n− 1, k).

2. How many ways are there of choosing k including n?
This means choosing k − 1 out of {1, . . . , n − 1}:
C(n− 1, k − 1).

Proof 2: Algebraic . . .

Note: If we define C(n, k) = 0 for k > n and k < 0,
Theorems 1 and 2 still hold.
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Pascal’s Triangle

Starting with n = 0, the nth row has n + 1 elements:

C(n, 0), . . . , C(n, n)

Note how Pascal’s Triangle illustrates Theorems 1 and 2.
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Theorem 3: For all n ≥ 0:

Σn
k=0

nk
 = 2n

Proof 1:
(
n
k

)
tells you all the way of choosing a subset

of size k from a set of size n. This means that the LHS
is all the ways of choosing a subset from a set of size n.
The product rule says that this is 2n.

Proof 2: By induction. Let P (n) be the statement of
the theorem.

Basis: Σ0
k=0

(
0
k

)
=

(
0
0

)
= 1 = 20. Thus P (0) is true.

Inductive step: How do we express Σn
k=0C(n, k) in terms

of n− 1, so that we can apply the inductive hypothesis?

• Use Theorem 2!
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More combinatorial identities

Theorem 4: For any nonnegative integer n

Σn
k=0k

nk
 = n2n−1

Proof 1:

Σn
k=0k

(
n
k

)
= Σn

k=1k
n!

(n−k)!k!

= Σn
k=1

n!
(n−k)!(k−1)!

= nΣn
k=1

(n−1)!
(n−k)!(k−1)!

= nΣn−1
j=0

(n−1)!
(n−1−j)!j! [Let j = k − 1]

= nΣn−1
j=0

(
n−1

j

)
= n2n−1

Proof 2: LHS tells you all the ways of picking a subset
of k elements out of n (a subcommittee) and designating
one of its members as special (subcomittee chairman).

What’s another way of doing this? Pick the chairman
first, and then the rest of the subcommittee!
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Theorem 5:

(n− k)

nk
 = (k + 1)

 n

(k + 1)

 = n

(n− 1)

k



Theorem 6:

C(n, k)C(n− k, j) = C(n, j)C(n− j, k)
= C(n, k + j)C(k + j, j)

Theorem 7: P (n, k) = nP (n− 1, k − 1).

12



The Binomial Theorem

We want to compute (x + y)n.
Some examples:

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

The pattern of the coefficients is just like that in the cor-
responding row of Pascal’s triangle!

Binomial Theorem:

(x + y)n = Σn
k=0

nk
xn−kyk

Proof 1: By induction on n. P (n) is the statement of
the theorem.

Basis: P (1) is obviously OK. (So is P (0).)
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Inductive step:

(x + y)n+1

= (x + y)(x + y)n

= (x + y)Σn
k=0

(
n
k

)
xn−kyk

= Σn
k=0

(
n
k

)
xn−k+1yk + Σn

k=0

(
n
k

)
xn−kyk+1

= . . . [Lots of missing steps]
= yn+1 + Σn

k=0(
(
n
k

)
+

(
n

k−1

)
)xn−k+1yk

= yn+1 + Σn
k=0(

(
n+1
k

)
xn+1−kyk

= Σn+1
k=0

(
n+1
k

)
xn+1−kyk

Proof 2: What is the coefficient of the xn−kyk term in
(x + y)n?
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Using the Binomial Theorem

Q: What is (x + 2)4?

A:

(x + 2)4

= x4 + C(4, 1)x3(2) + C(4, 2)x222 + C(4, 3)x23 + 24

= x4 + 8x3 + 24x2 + 32x + 16

Q: What is (1.02)7 to 4 decimal places?

A:

(1 + .02)7

= 17 + C(7, 1)16(.02) + C(7, 2)15(.0004) + C(7, 3)(.000008) + · · ·
= 1 + .14 + .0084 + .00028 + · · ·
≈ 1.14868
≈ 1.1487

Note that we have to go to 5 decimal places to compute
the answer to 4 decimal places.
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In the book they talk about the multinomial theorem.
That’s for dealing with (x + y + z)n.

They also talk about the binomial series theorem. That’s
for dealing with (x+y)α, when α is any real number (like
0.3).

You’re not responsible for these results.
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