Permutations

A permutation of n things taken r at a time, written $P(n, r)$, is an arrangement in a row of r things, taken from a set of n distinct things. Order matters.

Example 6: How many permutations are there of 5 things taken 3 at a time?

Answer: 5 choices for the first thing, 4 for the second, 3 for the third: $5 \times 4 \times 3=60$.

- If the 5 things are a, b, c, d, e, some possible permutations are:

$$
\begin{aligned}
& \text { abc abd abe acb acd ace } \\
& \text { adb adc ade aeb aec aed } \\
& \ldots
\end{aligned}
$$

In general

$$
P(n, r)=\frac{n!}{(n-r)!}=n(n-1) \cdots(n-r+1)
$$

Combinations

A combination of n things taken r at a time, written $C(n, r)$ or $\binom{n}{r}(" n$ choose r ") is any subset of r things from n things. Order makes no difference.

Example 7: How many ways are there of choosing 3 things from 5?

Answer: If order mattered, then it would be $5 \times 4 \times 3$. Since order doesn't matter,

$$
a b c, a c b, b a c, b c a, c a b, c b a
$$

are all the same.

- For way of choosing three elements, there are $3!=6$ ways of ordering them.

Therefore, the right answer is $(5 \times 4 \times 3) / 3!=10$:

$$
\begin{aligned}
& \text { abc abd abe acd ace } \\
& \text { ade bcd bce bde cde }
\end{aligned}
$$

In general

$$
C(n, r)=\frac{n!}{(n-r)!r!}=n(n-1) \cdots(n-r+1) / r!
$$

More Examples

Example 8: How many full houses are there in poker?

- A full house has 5 cards, 3 of one kind and 2 of another.
- E.g.: 3 5's and 2 K's.

Answer: You need to find a systematic way of counting:

- Choose the denomination for which you have three of a kind: 13 choices.
- Choose the three: $C(4,3)=4$ choices
- Choose the denomination for which you have two of a kind: 12 choices
- Choose the two: $C(4,2)=6$ choices.

Altogether, there are:

$$
13 \times 4 \times 12 \times 6=3744 \text { choices }
$$

0 !

It's useful to define $0!=1$.

Why?

1. Then we can inductively define

$$
(n+1)!=(n+1) n!,
$$

and this definition works even taking 0 as the base case instead of 1.
2. A better reason: Things work out right for $P(n, 0)$ and $C(n, 0)$!

How many permutations of n things from n are there?

$$
P(n, n)=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!
$$

How many ways are there of choosing n out of n ? 0 out of n ?

$$
\begin{aligned}
& \binom{n}{n}=\frac{n!}{n!0!}=1 \\
& \binom{n}{0}=\frac{n!}{0!n!}=1
\end{aligned}
$$

More Questions

Q: How many ways are there of choosing k things from $\{1, \ldots, n\}$ if 1 and 2 can't both be chosen? (Suppose $n, k \geq 2$.)

A: First find all the ways of choosing k things from $n-$ $C(n, k)$. Then subtract the number of those ways in which both 1 and 2 are chosen:

- This amounts to choosing $k-2$ things from $\{3, \ldots, n\}$: $C(n-2, k-2)$.
Thus, the answer is

$$
C(n, k)-C(n-2, k-2)
$$

Q: What if order matters?
A: Have to compute how many ways there are of picking k things, two of which are 1 and 2 .

$$
P(n, k)-k(k-1) P(n-2, k-2)
$$

Q: How many ways are there to distribute four distinct balls evenly between two distinct boxes (two balls go in each box)?

A: All you need to decide is which balls go in the first box.

$$
C(4,2)=6
$$

Q: What if the boxes are indistinguishable?
A: $C(4,2) / 2=3$.

Combinatorial Identities

There all lots of identities that you can form using $C(n, k)$. They seem mysterious at first, but there's usually a good reason for them.

Theorem 1: If $0 \leq k \leq n$, then

$$
C(n, k)=C(n, n-k)
$$

Proof:

$C(n, k)=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!(n-(n-k))!}=C(n, n-k)$
Q: Why should choosing k things out of n be the same as choosing $n-k$ things out of n ?

A: There's a 1-1 correspondence. For every way of choosing k things out of n, look at the things not chosen: that's a way of choosing $n-k$ things out of n.

This is a better way of thinking about Theorem 1 than the combinatorial proof.

Theorem 2: If $0<k<n$ then

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Proof 1: (Combinatorial) Suppose we want to choose k objects out of $\{1, \ldots, n\}$. Either we choose the last one (n) or we don't.

1. How many ways are there of choosing k without choosing the last one? $C(n-1, k)$.
2. How many ways are there of choosing k including n ? This means choosing $k-1$ out of $\{1, \ldots, n-1\}$: $C(n-1, k-1)$.

Proof 2: Algebraic ...

Note: If we define $C(n, k)=0$ for $k>n$ and $k<0$, Theorems 1 and 2 still hold.

Pascal's Triangle

Starting with $n=0$, the nth row has $n+1$ elements:

$$
C(n, 0), \ldots, C(n, n)
$$

Note how Pascal's Triangle illustrates Theorems 1 and 2.

Theorem 3: For all $n \geq 0$:

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Proof 1: $\binom{n}{k}$ tells you all the way of choosing a subset of size k from a set of size n. This means that the LHS is all the ways of choosing a subset from a set of size n. The product rule says that this is 2^{n}.

Proof 2: By induction. Let $P(n)$ be the statement of the theorem.

Basis: $\Sigma_{k=0}^{0}\binom{0}{k}=\binom{0}{0}=1=2^{0}$. Thus $P(0)$ is true.
Inductive step: How do we express $\sum_{k=0}^{n} C(n, k)$ in terms of $n-1$, so that we can apply the inductive hypothesis?

- Use Theorem 2!

More combinatorial identities

Theorem 4: For any nonnegative integer n

$$
\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}
$$

Proof 1:

$$
\begin{aligned}
& \sum_{k=0}^{n} k\binom{n}{k} \\
= & \sum_{k=1}^{n} k \frac{n!}{(n-k)!k!} \\
= & \sum_{k=1}^{n} \frac{n!}{(n-k)!(k-1)!} \\
= & n \sum_{k=1}^{n} \frac{(n-1)!}{(n-k)!(k-1)!} \\
= & n \sum_{j=0}^{n-1} \frac{(n-1)!}{(n-1-j)!j!} \quad[\text { Let } j=k-1] \\
= & n \sum_{j=0}^{n-1}\binom{n-1}{j} \\
= & n 2^{n-1}
\end{aligned}
$$

Proof 2: LHS tells you all the ways of picking a subset of k elements out of n (a subcommittee) and designating one of its members as special (subcomittee chairman).

What's another way of doing this? Pick the chairman first, and then the rest of the subcommittee!

Theorem 5:

$$
(n-k)\binom{n}{k}=(k+1)\binom{n}{(k+1)}=n\binom{(n-1)}{k}
$$

Theorem 6:

$$
\begin{gathered}
C(n, k) C(n-k, j)=C(n, j) C(n-j, k) \\
=C(n, k+j) C(k+j, j)
\end{gathered}
$$

Theorem 7: $P(n, k)=n P(n-1, k-1)$.

The Binomial Theorem

We want to compute $(x+y)^{n}$.
Some examples:

$$
\begin{gathered}
(x+y)^{0}=1 \\
(x+y)^{1}=x+y \\
(x+y)^{2}=x^{2}+2 x y+y^{2} \\
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{gathered}
$$

The pattern of the coefficients is just like that in the corresponding row of Pascal's triangle!

Binomial Theorem:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

Proof 1: By induction on $n . P(n)$ is the statement of the theorem.

Basis: $P(1)$ is obviously OK. (So is $P(0)$.)

Inductive step:

$$
\begin{aligned}
& (x+y)^{n+1} \\
= & (x+y)(x+y)^{n} \\
= & (x+y) \sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \\
= & \sum_{k=0}^{n}\binom{n}{k} x^{n-k+1} y^{k}+\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k+1} \\
= & \quad[\text { Lots of missing steps] } \\
= & y^{n+1}+\sum_{k=0}^{n}\left(\binom{n}{k}+\binom{n}{k-1}\right) x^{n-k+1} y^{k} \\
= & y^{n+1}+\sum_{k=0}^{n}\left(\binom{n+1}{k} x^{n+1-k} y^{k}\right. \\
= & \sum_{k=0}^{n+1}\binom{n+1}{k} x^{n+1-k} y^{k}
\end{aligned}
$$

Proof 2: What is the coefficient of the $x^{n-k} y^{k}$ term in $(x+y)^{n}$?

Using the Binomial Theorem

Q: What is $(x+2)^{4}$?
A:

$$
\begin{aligned}
& (x+2)^{4} \\
= & x^{4}+C(4,1) x^{3}(2)+C(4,2) x^{2} 2^{2}+C(4,3) x 2^{3}+2^{4} \\
= & x^{4}+8 x^{3}+24 x^{2}+32 x+16
\end{aligned}
$$

Q: What is $(1.02)^{7}$ to 4 decimal places?
A:

$$
\begin{aligned}
& (1+.02)^{7} \\
= & 1^{7}+C(7,1) 1^{6}(.02)+C(7,2) 1^{5}(.0004)+C(7,3)(.000008) \\
= & 1+.14+.0084+.00028+\cdots \\
\approx & 1.14868 \\
\approx & 1.1487
\end{aligned}
$$

Note that we have to go to 5 decimal places to compute the answer to 4 decimal places.

In the book they talk about the multinomial theorem. That's for dealing with $(x+y+z)^{n}$.

They also talk about the binomial series theorem. That's for dealing with $(x+y)^{\alpha}$, when α is any real number (like 0.3).

You're not responsible for these results.

