Example of Extended Euclidean
Algorithm

Recall that ged(84,33) = ged(33,18) = ged(18,15) =
ged(15,3) = ged(3,0) = 3

We work backwards to write 3 as a linear combination of
84 and 33:
3=18-15
[Now 3 is a linear combination of 18 and 15]
=18 — (33 —18)
=2(18) — 33
[Now 3 is a linear combination of 18 and 33]
=2(84—-2x33)—33
=2x8—5x%x33
[Now 3 is a linear combination of 84 and 33]

Some Consequences

Corollary 2: If a and b are relatively prime, then there
exist s and ¢ such that as + bt = 1.

Corollary 3: If ged(a,b) = 1 and a | be, then a | c.
Proof:

e Exist s,t € Z such that sa +tb=1

e Multiply both sides by ¢: sac + tbc = ¢

e Since a | be, a | sac+ tbe,so a | ¢
Corollary 4: If p is prime and p | I ; a;, then p | a;
for some 1 <4 < n.
Proof: By induction on n:

o If n = 1: trivial.
Suppose the result holds for n and p | 11"} a;.

e note that p | 1"} a; = (117, a;) @, 1.

e If p | a1 we are done.

e [f not, ged(p, ani1) = 1.

e By Corollary 3, p | [T, a;

e By the IH, p | a; for some 1 <4 < n.
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The Fundamental Theorem of
Arithmetic, 11

Theorem 3: Every n > 1 can be represented uniquely
as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong
induction.

e Base case: Obvious if n = 2.

Inductive step. Suppose OK for n’ < n.
e Suppose that n = II7_; p; = IT}_, ¢;.
o | IT%_; g, so by Corollary 4, py | ¢; for some j.
e But then p; = g, since both p; and ¢; are prime.
o But then n/pr =pa---ps=aq1- - ¢j—1qj41- - @

e Result now follows from I.H.

Characterizing the GCD and LCM

Theorem 6: Suppose a = I1"_ pi" and b = Hlep‘fi,
where p; are primes and «;, 3; € N.

e Some «;’s, 3;’s could be 0.

Then

ged(a, b) =11, p;_“iﬂ(ai-ﬂi)
1CIn(a7 b) =17, p{rlax(ai,ui)

K3

Proof: For ged, let ¢ =117, p,rl-mn(a“gi).
Clearly ¢ | @ and ¢ | b.
e Thus, ¢ is a common divisor, so ¢ < ged(a, b).
If 7 | ged(a, b),
e must have g € {p1,...,pn}
o Otherwise ¢ f aso q f ged(a,b) (likewise b)
If g =pi, ¢ | ged(a, b), must have v < min(oy, 5;)
oE.g,ify > thenp] fa

e Thus, ¢ > ged(a, b).

Conclusion: ¢ = ged(a, b).




max(c,0;)

For lem, let d =11, p; .
e Clearly a | d, b | d, so d is a common multiple.
e Thus, d > lem(a, b).
Suppose lem(a, b) = 117", p}".
e Must have a; < v, since p;" | a and a | lem(a, ).
e Similarly, must have 3; < ;.
e Thus, max(a;, 5;) < ;.

Conclusion: d = lem(a, b).

Example: 432 = 2%3% and 95256 = 233°72, so
o gcd(95256,432) = 233% = 216
e 1cm (95256, 432) = 213972 = 190512.

Corollary 5: ab = ged(a,b) - lem(a, b)
Proof:

min(a, 3) + max(«, §) = a + S.

Example: 4-10 =220 = ged(4, 10) - lem(4, 10).

Modular Arithmetic

Remember: a = b (mod m) means a and b have the same
remainder when divided by m.

e Equivalently: @ = b (mod m) iff m | (a — b)
e a is congruent to b mod m
Theorem 7: If a; = ay (mod m) and by = by (mod m),
then
(a) (a1 + b1) = (ag + b2) (mod m)
(b) a1by = asby (mod m)
Proof: Suppose
®eq =CciMm-—+r,a = Cm-+r
oebi=dm+r1, by=dom+17r'
S0
ea;+b = (cr+dy)ym—+(r+r)
o ay+by=(cot+dy)m+ (r+1")
m | ((a1 + b1) — (a2 + ba) = ((c1 + di1) — (ca + d2))m

e Conclusion: aj + by = as + by (mod m).

For multiplication:
e aiby = (cydym +r'ey + rdy)m + rv’!
® asby = (codom + 1r'cy + rdo)m + rv’
m | (a1by — asgbs)
e Conclusion: ajb; = ashy (mod m).

Bottom line: addition and multiplication carry over to
the modular world.

Modular arithmetic has lots of applications.

e Here are four . ..

Hashing

Problem: How can we efficiently store, retrieve, and
delete records from a large database?

e For example, students records.
Assume, each record has a unique key
e F.g. student ID, Social Security #
Do we keep an array sorted by the key?
e Fasy retrieval but difficult insertion and deletion.
How about a table with an entry for every possible key?
e Often infeasible, almost always wasteful.
e There are 10" possible social security numbers.

Solution: store the records in an array of size IV, where N
is somewhat bigger than the expected number of records.

e Store record with id & in location h(k)

o h is the hash function
o Basic hash function: h(k) := k (mod N).

e A collision occurs when h(k;) = h(ks) and ky # ko.
o Choose N sufficiently large to minimize collisions

e Lots of techniques for dealing with collisions
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Pseudorandom Sequences

For randomized algorithms we need a random number
generator.

e Most languages provide you with a function “rand”.
e There is nothing random about rand!

o It creates an apparently random sequence deter-
ministically
o These are called pseudorandom sequences

A standard technique for creating psuedorandom sequences:
the linear congruential method.

e Choose a modulus m € N,
e a multiplier a € {2,3,...,m — 1}, and
e an increment ¢ € Z,, = {0,1,...,m — 1}.
e Choose a seed xy € Z,,
o Typically the time on some internal clock is used
e Compute z,41 = azx, + ¢ (mod m).

Warning: a poorly implemented rand, such as in C, can
wreak havoc on Monte Carlo simulations.

ISBN Numbers

Since 1968, most published books have been assigned a
10-digit ISBN numbers:

e identifies country of publication, publisher, and book
itself
e The ISBN number for DAMS3 is 1-56881-166-7
All the information is encoded in the first 9 digits
e The 10th digit is used as a parity check
o If the digits are ay, ..., a1, then we must have
aj + 2as + + -+ + 9ag + 10a1p = 0 (mod 11).
e For DAMS3, get

142%x543x64+4x8+5x8+6x1
+7x14+8Xx6+9%x6+10x7=286=0 (mod 11)

e This test always detects errors in single digits and
transposition errors

o Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes
(UPC codes/bar codes) that appear on almost all items

e The numbers are encoded by thicknesses of bars, to
make them machine readable
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Casting out 9s

Notice that a number is equivalent to the sum of its dig-
its mod 9. This can be used as a way of checking your
addition and of doing mindreading [come to class to hear
more . .. |

Linear Congruences

The equation ax = b for a,b € R is uniquely solvable if
a0 x=bat

e Can we also (uniquely) solve ax = b (mod m)?
o If x is a solution, then so is xg + km Vk € Z
o...since km =0 (mod m).
So, uniqueness can only be mod m.
But even mod m, there can be more than one solution:
e Consider 2z = 2 (mod 4)
e Clearly z =1 (mod 4) is one solution
e But so is z = 3 (mod 4)!

Theorem 8: If gcd(a,m) = 1 then there is a unique
solution (mod m) to ax = b (mod m).

Proof: Suppose r, s € Z both solve the equation:
e then ar = as (mod m), so m | a(r — s)
e Since ged(a,m) = 1, by Corollary 3, m | (r — s)
e But that means r = s (mod m)

So if there’s a solution at all, then it’s unique mod m.
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Solving Linear Congruences

But why is there a solution to axz = b (mod m)?
Key idea: find a~! mod m; then z = ba~! (mod m)

e By Corollary 2, since ged(a, m) = 1, there exist s, ¢
such that
as+mt=1

e So as =1 (mod m)
e That means s = a~* (mod m)

ez = bs (mod m)

The Chinese Remainder Theorem

Suppose we want to solve a system of linear congruences:
Example: Find z such that

x =2 (mod 3)

x =3 (mod 5)

x =2 (mod 7)
Can we solve for 7 Is the answer unique?
Definition: my,...,m, are pairwise relatively prime
if each pair m;, m; is relatively prime.
Theorem 9 (Chinese Remainder Theorem): Let
mi,...,m, € NT be pairwise relatively prime. The sys-
tem

r=a; (modm;) i=12...n (1)
has a unique solution modulo M = IITm,;.
e The best we can hope for is uniqueness modulo M:

o If & is a solution then so is x + kM for any k € Z.

Proof: First I show that there is a solution; then I'll
show it’s unique.

CRT: Existence

Key idea for existence:
Suppose we can find y1, ..., y, such that

y; = a; (mod m;)
y; =0 (mod m;) if j # 1.

Now consider y := ¥, y;.

Y74y = a; (mod my)

e Since y; = a; mod m; and y; = 0 mod m; if j # 1.
So y is a solution!
e Now we need to find yy, .. ., y,.
o Let M; = M/m; = mq X« X1 XMy X« XMy,
e gcd(M;, m;) = 1, since m;’s pairwise relatively prime
o No common prime factors among any of the m;’s
Choose y; such that (M;)y; = a; (mod m;)
o Can do that by Theorem 8, since ged(M;, m;) = 1.
Let y; = y;M;.
o y; is a multiple of m; if j # 7, so y; = 0 (mod m;)
o y; = y:M; = a; (mod m;) by construction.
S0 Y1 + - - - + ¥y, is a solution to the system, mod M.
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CRT: Example

Find z such that

(mod 3)
(mod 5)
(mod 7)

Find y; such that y; = 2 (mod 3), 11 = 0 (mod 5/7):

88 8
11Tl
DO W DO

e y; has the form g} X 5 X 7
e 35y; =2 (mod 3)
ey =1 s0y =35
Find ys such that yo = 3 (mod 5), yo = 0 (mod 3/7):
e 3 has the form 3, x 3 x 7
e 21y, = 3 (mod 5)
ey, = 3,50 yp = 63.
Find y3 such that y3 = 2 (mod 7), y3 = 0 (mod 3/5):
e y3 has the form y5 X 3 x5
e 15y4 =2 (mod 7)
oyt =2 50 y3 = 30.
Solution is © = yy + y + y3 = 35 + 63 + 30 = 128
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CRT': Uniqueness

What if x, y are both solutions to the equations?

ex =y (modm)=m|(x—y),fori=1,....n

e Claim: M =my---m, | (z—y)

es0x =y (mod M)
Theorem 10: If my,...,m, are pairwise relatively
prime and m; | b for i = 1,...,n, then my---m,, | b.
Proof: By induction on n.

e For n = 1 the statement is trivial.
Suppose statement holds for n = N.

e Suppose my, ..., my41 relatively prime, m; | b for
i=1,...,N+1

e by IH, my---my | b= b=my---mpyc for some ¢
e By assumption, my41 | b, so m | (my---my)c

e ged(my - -mpy,my11) = 1 (since m;’s pairwise rela-
tively prime = no common factors)

e by Corollary 3, my,1 | ¢
esoc=dmyyi, b=my---mymyiid

®s0 My My | b

An Application of CRT: Computer
Arithmetic with Large Integers

Suppose we want to perform arithmetic operations (ad-
dition, multiplication) with extremely large integers

e too large to be represented easily in a computer
Idea:

e Step 1: Find suitable moduli my, ..., m, so that m;’s
are relatively prime and my - - - m,, is bigger than the
answer.

e Step 2: Perform all the operations mod m;, j =
1,...,n.
o This means we're working with much smaller num-
bers (no bigger than m;)
o The operations are much faster

o Can do this in parallel
e Suppose the answer mod m; is a;:

o Use CRT to find « such that x = a; (mod m;)

o The unique z such that 0 < x < my ---m,, is the
answer to the original problem.

Example: The following are pairwise relatively prime:
235_1 234_1 233_1 229_1 223_1
We can add and multiply positive integers up to

(235 —1)(2% = 1)(28 — 1)(2¥ — 1)(2% — 1) > 216,

Fermat’s Little Theorem

Theorem 11 (Fermat’s Little Theorem):
(a) If p prime and ged(p, a) = 1, then a?~! = 1 (mod p).
(b) For all a € Z, a? = a (mod p).
Proof. Let
A={1,2,....p—1}
B = {la mod p,2a mod p, ..., (p — 1)a mod p}
Claim: A= B.
e 0 ¢ B, since p fja,so B C A.
o [f i # j, then ia mod p # ja mod p
osince p f(j —i)a
Thus |A] =p—1,50 A= B.
Therefore,
icai = iepi (mod p)
= (p—D'=a(2a)---(p—1a=(p—1)a’! (nod p)
= p| (@ =1)(p—1)
= pl (@ —1) [since ged(p, (p— 1)) = 1]
= a1 =1 (mod p)
It follows that a? = a (mod p)
e This is true even if ged(p, a) # 1; e, if p|a
Why is this being taught in a CS course?
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