
Example of Extended Euclidean
Algorithm

Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) =
gcd(15, 3) = gcd(3, 0) = 3

We work backwards to write 3 as a linear combination of
84 and 33:

3 = 18− 15
[Now 3 is a linear combination of 18 and 15]

= 18− (33− 18)
= 2(18)− 33

[Now 3 is a linear combination of 18 and 33]
= 2(84− 2× 33))− 33
= 2× 84− 5× 33

[Now 3 is a linear combination of 84 and 33]
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Some Consequences

Corollary 2: If a and b are relatively prime, then there
exist s and t such that as + bt = 1.

Corollary 3: If gcd(a, b) = 1 and a | bc, then a | c.
Proof:

• Exist s, t ∈ Z such that sa + tb = 1

• Multiply both sides by c: sac + tbc = c

• Since a | bc, a | sac + tbc, so a | c
Corollary 4: If p is prime and p | Πn

i=1 ai, then p | ai

for some 1 ≤ i ≤ n.

Proof: By induction on n:

• If n = 1: trivial.

Suppose the result holds for n and p | Πn+1
i=1 ai.

• note that p | Πn+1
i=1 ai = (Πn

i=1 ai)an+1.

• If p | an+1 we are done.

• If not, gcd(p, an+1) = 1.

• By Corollary 3, p | Πn
i=1 ai

• By the IH, p | ai for some 1 ≤ i ≤ n.
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The Fundamental Theorem of
Arithmetic, II

Theorem 3: Every n > 1 can be represented uniquely
as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong
induction.

• Base case: Obvious if n = 2.

Inductive step. Suppose OK for n′ < n.

• Suppose that n = Πs
i=1 pi = Πr

j=1 qj.

• p1 | Πr
j=1 qj, so by Corollary 4, p1 | qj for some j.

• But then p1 = qj, since both p1 and qj are prime.

• But then n/p1 = p2 · · · ps = q1 · · · qj−1qj+1 · · · qr

• Result now follows from I.H.
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Characterizing the GCD and LCM

Theorem 6: Suppose a = Πn
i=1 pαi

i and b = Πn
i=1 pβi

i ,
where pi are primes and αi, βi ∈ N .

• Some αi’s, βi’s could be 0.

Then
gcd(a, b) = Πn

i=1 p
min(αi,βi)
i

lcm(a, b) = Πn
i=1 p

max(αi,βi)
i

Proof: For gcd, let c = Πn
i=1 p

min(αi,βi)
i .

Clearly c | a and c | b.
• Thus, c is a common divisor, so c ≤ gcd(a, b).

If qγ | gcd(a, b),

• must have q ∈ {p1, . . . , pn}
◦ Otherwise q 6 | a so q 6 | gcd(a, b) (likewise b)

If q = pi, qγ | gcd(a, b), must have γ ≤ min(αi, βi)

◦ E.g., if γ > αi, then pγ
i 6 | a

• Thus, c ≥ gcd(a, b).

Conclusion: c = gcd(a, b).
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For lcm, let d = Πn
i=1 p

max(αi,βi)
i .

• Clearly a | d, b | d, so d is a common multiple.

• Thus, d ≥ lcm(a, b).

Suppose lcm(a, b) = Πn
i=1 pγi

i .

• Must have αi ≤ γi, since pαi
i | a and a | lcm(a, b).

• Similarly, must have βi ≤ γi.

• Thus, max(αi, βi) ≤ γi.

Conclusion: d = lcm(a, b).

Example: 432 = 2433, and 95256 = 233572, so

• gcd(95256, 432) = 2333 = 216

• lcm(95256, 432) = 243572 = 190512.

Corollary 5: ab = gcd(a, b) · lcm(a, b)

Proof:

min(α, β) + max(α, β) = α + β.

Example: 4 · 10 = 2 · 20 = gcd(4, 10) · lcm(4, 10).
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Modular Arithmetic

Remember: a ≡ b (mod m) means a and b have the same
remainder when divided by m.

• Equivalently: a ≡ b (mod m) iff m | (a− b)

• a is congruent to b mod m

Theorem 7: If a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m),
then

(a) (a1 + b1) ≡ (a2 + b2) (mod m)

(b) a1b1 ≡ a2b2 (mod m)

Proof: Suppose

• a1 = c1m + r, a2 = c2m + r

• b1 = d1m + r′, b2 = d2m + r′

So

• a1 + b1 = (c1 + d1)m + (r + r′)

• a2 + b2 = (c2 + d2)m + (r + r′)

m | ((a1 + b1)− (a2 + b2) = ((c1 + d1)− (c2 + d2))m

• Conclusion: a1 + b1 ≡ a2 + b2 (mod m).
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For multiplication:

• a1b1 = (c1d1m + r′c1 + rd1)m + rr′

• a2b2 = (c2d2m + r′c2 + rd2)m + rr′

m | (a1b1 − a2b2)

• Conclusion: a1b1 ≡ a2b2 (mod m).

Bottom line: addition and multiplication carry over to
the modular world.

Modular arithmetic has lots of applications.

• Here are four . . .
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Hashing

Problem: How can we efficiently store, retrieve, and
delete records from a large database?

• For example, students records.

Assume, each record has a unique key

• E.g. student ID, Social Security #

Do we keep an array sorted by the key?

• Easy retrieval but difficult insertion and deletion.

How about a table with an entry for every possible key?

• Often infeasible, almost always wasteful.

• There are 1010 possible social security numbers.

Solution: store the records in an array of size N , where N
is somewhat bigger than the expected number of records.

• Store record with id k in location h(k)

◦ h is the hash function

◦ Basic hash function: h(k) := k (mod N).

• A collision occurs when h(k1) = h(k2) and k1 6= k2.

◦ Choose N sufficiently large to minimize collisions

• Lots of techniques for dealing with collisions
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Pseudorandom Sequences

For randomized algorithms we need a random number
generator.

• Most languages provide you with a function “rand”.

• There is nothing random about rand!

◦ It creates an apparently random sequence deter-
ministically

◦ These are called pseudorandom sequences

A standard technique for creating psuedorandom sequences:
the linear congruential method.

• Choose a modulus m ∈ N+,

• a multiplier a ∈ {2, 3, . . . ,m− 1}, and

• an increment c ∈ Zm = {0, 1, . . . ,m− 1}.
• Choose a seed x0 ∈ Zm

◦ Typically the time on some internal clock is used

• Compute xn+1 = axn + c (mod m).

Warning: a poorly implemented rand, such as in C, can
wreak havoc on Monte Carlo simulations.
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ISBN Numbers

Since 1968, most published books have been assigned a
10-digit ISBN numbers:

• identifies country of publication, publisher, and book
itself

• The ISBN number for DAM3 is 1-56881-166-7

All the information is encoded in the first 9 digits

• The 10th digit is used as a parity check

• If the digits are a1, . . . , a10, then we must have

a1 + 2a2 + · · · + 9a9 + 10a10 ≡ 0 (mod 11).

• For DAM3, get

1 + 2× 5 + 3× 6 + 4× 8 + 5× 8 + 6× 1
+7× 1 + 8× 6 + 9× 6 + 10× 7 = 286 ≡ 0 (mod 11)

• This test always detects errors in single digits and
transposition errors

◦ Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes
(UPC codes/bar codes) that appear on almost all items

• The numbers are encoded by thicknesses of bars, to
make them machine readable
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Casting out 9s

Notice that a number is equivalent to the sum of its dig-
its mod 9. This can be used as a way of checking your
addition and of doing mindreading [come to class to hear
more . . . ]

11



Linear Congruences

The equation ax = b for a, b ∈ R is uniquely solvable if
a 6= 0: x = ba−1.

• Can we also (uniquely) solve ax ≡ b (mod m)?

• If x0 is a solution, then so is x0 + km ∀k ∈ Z

◦ . . . since km ≡ 0 (mod m).

So, uniqueness can only be mod m.

But even mod m, there can be more than one solution:

• Consider 2x ≡ 2 (mod 4)

• Clearly x ≡ 1 (mod 4) is one solution

• But so is x ≡ 3 (mod 4)!

Theorem 8: If gcd(a, m) = 1 then there is a unique
solution (mod m) to ax ≡ b (mod m).

Proof: Suppose r, s ∈ Z both solve the equation:

• then ar ≡ as (mod m), so m | a(r − s)

• Since gcd(a, m) = 1, by Corollary 3, m | (r − s)

• But that means r ≡ s (mod m)

So if there’s a solution at all, then it’s unique mod m.
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Solving Linear Congruences

But why is there a solution to ax ≡ b (mod m)?

Key idea: find a−1 mod m; then x ≡ ba−1 (mod m)

• By Corollary 2, since gcd(a, m) = 1, there exist s, t
such that

as + mt = 1

• So as ≡ 1 (mod m)

• That means s ≡ a−1 (mod m)

• x ≡ bs (mod m)
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The Chinese Remainder Theorem

Suppose we want to solve a system of linear congruences:

Example: Find x such that

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Can we solve for x? Is the answer unique?

Definition: m1, . . . ,mn are pairwise relatively prime
if each pair mi, mj is relatively prime.

Theorem 9 (Chinese Remainder Theorem): Let
m1, . . . ,mn ∈ N+ be pairwise relatively prime. The sys-
tem

x ≡ ai (mod mi) i = 1, 2 . . . n (1)

has a unique solution modulo M = Πn
1mi.

• The best we can hope for is uniqueness modulo M :

◦ If x is a solution then so is x+kM for any k ∈ Z.

Proof: First I show that there is a solution; then I’ll
show it’s unique.
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CRT: Existence

Key idea for existence:
Suppose we can find y1, . . . , yn such that

yi ≡ ai (mod mi)
yi ≡ 0 (mod mj) if j 6= i.

Now consider y := Σn
j=1 yj.

Σn
j=1 yj ≡ ai (mod mi)

• Since yi = ai mod mi and yj = 0 mod mj if j 6= i.

So y is a solution!

• Now we need to find y1, . . . , yn.

• Let Mi = M/mi = m1×· · ·×mi−1×mi+1×· · ·×mn.

• gcd(Mi, mi) = 1, since mj’s pairwise relatively prime

◦ No common prime factors among any of the mj’s

Choose y′i such that (Mi)y
′
i ≡ ai (mod mi)

◦ Can do that by Theorem 8, since gcd(Mi, mi) = 1.

Let yi = y′iMi.

◦ yi is a multiple of mj if j 6= i, so yi ≡ 0 (mod mj)

◦ yi = y′iMi ≡ ai (mod mi) by construction.

So y1 + · · · + yn is a solution to the system, mod M .
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CRT: Example

Find x such that

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Find y1 such that y1 ≡ 2 (mod 3), y1 ≡ 0 (mod 5/7):

• y1 has the form y′1 × 5× 7

• 35y′1 ≡ 2 (mod 3)

• y′1 = 1, so y1 = 35.

Find y2 such that y2 ≡ 3 (mod 5), y2 ≡ 0 (mod 3/7):

• y2 has the form y′2 × 3× 7

• 21y′2 ≡ 3 (mod 5)

• y′2 = 3, so y2 = 63.

Find y3 such that y3 ≡ 2 (mod 7), y3 ≡ 0 (mod 3/5):

• y3 has the form y′3 × 3× 5

• 15y′3 ≡ 2 (mod 7)

• y′3 = 2, so y3 = 30.

Solution is x = y1 + y2 + y3 = 35 + 63 + 30 = 128
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CRT: Uniqueness

What if x, y are both solutions to the equations?

• x ≡ y (mod mi) ⇒ mi | (x− y), for i = 1, . . . , n

• Claim: M = m1 · · ·mn | (x− y)

• so x ≡ y (mod M)

Theorem 10: If m1, . . . ,mn are pairwise relatively
prime and mi | b for i = 1, . . . , n, then m1 · · ·mn | b.
Proof: By induction on n.

• For n = 1 the statement is trivial.

Suppose statement holds for n = N .

• Suppose m1, . . . ,mN+1 relatively prime, mi | b for
i = 1, . . . , N + 1.

• by IH, m1 · · ·mN | b ⇒ b = m1 · · ·mNc for some c

• By assumption, mN+1 | b, so m | (m1 · · ·mN)c

• gcd(m1 · · ·mN , mN+1) = 1 (since mi’s pairwise rela-
tively prime ⇒ no common factors)

• by Corollary 3, mN+1 | c
• so c = dmN+1, b = m1 · · ·mNmN+1d

• so m1 · · ·mN+1 | b.
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An Application of CRT: Computer
Arithmetic with Large Integers

Suppose we want to perform arithmetic operations (ad-
dition, multiplication) with extremely large integers

• too large to be represented easily in a computer

Idea:

• Step 1: Find suitable moduli m1, . . . ,mn so that mi’s
are relatively prime and m1 · · ·mn is bigger than the
answer.

• Step 2: Perform all the operations mod mj, j =
1, . . . , n.

◦ This means we’re working with much smaller num-
bers (no bigger than mj)

◦ The operations are much faster

◦ Can do this in parallel

• Suppose the answer mod mj is aj:

◦ Use CRT to find x such that x ≡ aj (mod mj)

◦ The unique x such that 0 < x < m1 · · ·mn is the
answer to the original problem.
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Example: The following are pairwise relatively prime:

235 − 1, 234 − 1, 233 − 1, 229 − 1, 223 − 1

We can add and multiply positive integers up to

(235 − 1)(234 − 1)(233 − 1)(229 − 1)(223 − 1) > 2163.
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Fermat’s Little Theorem

Theorem 11 (Fermat’s Little Theorem):

(a) If p prime and gcd(p, a) = 1, then ap−1 ≡ 1 (mod p).

(b) For all a ∈ Z, ap ≡ a (mod p).

Proof. Let
A = {1, 2, . . . , p− 1}
B = {1a mod p, 2a mod p, . . . , (p− 1)a mod p}

Claim: A = B.

• 0 /∈ B, since p 6 | ja, so B ⊂ A.

• If i 6= j, then ia mod p 6= ja mod p

◦ since p 6 | (j − i)a

Thus |A| = p− 1, so A = B.

Therefore,

Πi∈A i ≡ Πi∈B i (mod p)
⇒ (p− 1)! ≡ a(2a) · · · (p− 1)a = (p− 1)! ap−1 (mod p)
⇒ p | (ap−1 − 1)(p− 1)!
⇒ p | (ap−1 − 1) [since gcd(p, (p− 1)!) = 1]
⇒ ap−1 ≡ 1 (mod p)

It follows that ap ≡ a (mod p)

• This is true even if gcd(p, a) 6= 1; i.e., if p | a
Why is this being taught in a CS course?
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