Example of Extended Euclidean Algorithm

Recall that $\operatorname{gcd}(84,33)=\operatorname{gcd}(33,18)=\operatorname{gcd}(18,15)=$ $\operatorname{gcd}(15,3)=\operatorname{gcd}(3,0)=3$

We work backwards to write 3 as a linear combination of 84 and 33 :

$$
3=18-15
$$

[Now 3 is a linear combination of 18 and 15]
$=18-(33-18)$
$=2(18)-33$
[Now 3 is a linear combination of 18 and 33]
$=2(84-2 \times 33))-33$
$=2 \times 84-5 \times 33$
[Now 3 is a linear combination of 84 and 33]

Some Consequences

Corollary 2: If a and b are relatively prime, then there exist s and t such that $a s+b t=1$.

Corollary 3: If $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$. Proof:

- Exist $s, t \in Z$ such that $s a+t b=1$
- Multiply both sides by $c: s a c+t b c=c$
- Since $a|b c, a| s a c+t b c$, so $a \mid c$

Corollary 4: If p is prime and $p \mid \prod_{i=1}^{n} a_{i}$, then $p \mid a_{i}$ for some $1 \leq i \leq n$.
Proof: By induction on n :

- If $n=1$: trivial.

Suppose the result holds for n and $p \mid \prod_{i=1}^{n+1} a_{i}$.

- note that $p \mid \Pi_{i=1}^{n+1} a_{i}=\left(\prod_{i=1}^{n} a_{i}\right) a_{n+1}$.
- If $p \mid a_{n+1}$ we are done.
- If not, $\operatorname{gcd}\left(p, a_{n+1}\right)=1$.
- By Corollary 3, $p \mid \Pi_{i=1}^{n} a_{i}$
- By the IH, $p \mid a_{i}$ for some $1 \leq i \leq n$.

The Fundamental Theorem of Arithmetic, II

Theorem 3: Every $n>1$ can be represented uniquely as a product of primes, written in nondecreasing size.
Proof: Still need to prove uniqueness. We do it by strong induction.

- Base case: Obvious if $n=2$.

Inductive step. Suppose OK for $n^{\prime}<n$.

- Suppose that $n=\prod_{i=1}^{s} p_{i}=\prod_{j=1}^{r} q_{j}$.
- $p_{1} \mid \Pi_{j=1}^{r} q_{j}$, so by Corollary $4, p_{1} \mid q_{j}$ for some j.
- But then $p_{1}=q_{j}$, since both p_{1} and q_{j} are prime.
- But then $n / p_{1}=p_{2} \cdots p_{s}=q_{1} \cdots q_{j-1} q_{j+1} \cdots q_{r}$
- Result now follows from I.H.

Characterizing the GCD and LCM

Theorem 6: Suppose $a=\prod_{i=1}^{n} p_{i}^{\alpha_{i}}$ and $b=\prod_{i=1}^{n} p_{i}^{\beta_{i}}$, where p_{i} are primes and $\alpha_{i}, \beta_{i} \in N$.

- Some α_{i} 's, β_{i} 's could be 0 .

Then

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=\prod_{i=1}^{n} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)} \\
& \operatorname{lcm}(a, b)=\prod_{i=1}^{n} p_{i}^{\max \left(\alpha_{i}, \beta_{i}\right)}
\end{aligned}
$$

Proof: For gcd, let $c=\prod_{i=1}^{n} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)}$.
Clearly $c \mid a$ and $c \mid b$.

- Thus, c is a common divisor, so $c \leq \operatorname{gcd}(a, b)$.

If $q^{\gamma} \mid \operatorname{gcd}(a, b)$,

- must have $q \in\left\{p_{1}, \ldots, p_{n}\right\}$
- Otherwise $q \not \backslash a$ so $q \backslash \operatorname{gcd}(a, b)$ (likewise b)

If $q=p_{i}, q^{\gamma} \mid \operatorname{gcd}(a, b)$, must have $\gamma \leq \min \left(\alpha_{i}, \beta_{i}\right)$ - E.g., if $\gamma>\alpha_{i}$, then $p_{i}^{\gamma} \not \backslash a$

- Thus, $c \geq \operatorname{gcd}(a, b)$.

Conclusion: $c=\operatorname{gcd}(a, b)$.

For lcm, let $d=\Pi_{i=1}^{n} p_{i}^{\max \left(\alpha_{i}, \beta_{i}\right)}$.

- Clearly $a|d, b| d$, so d is a common multiple.
- Thus, $d \geq \operatorname{lcm}(a, b)$.

Suppose $\operatorname{lcm}(a, b)=\prod_{i=1}^{n} p_{i}^{\gamma_{i}}$.

- Must have $\alpha_{i} \leq \gamma_{i}$, since $p_{i}^{\alpha_{i}} \mid a$ and $a \mid \operatorname{lcm}(a, b)$.
- Similarly, must have $\beta_{i} \leq \gamma_{i}$.
- Thus, $\max \left(\alpha_{i}, \beta_{i}\right) \leq \gamma_{i}$.

Conclusion: $d=\operatorname{lcm}(a, b)$.
Example: $432=2^{4} 3^{3}$, and $95256=2^{3} 3^{5} 7^{2}$, so

- $\operatorname{gcd}(95256,432)=2^{3} 3^{3}=216$
- $\operatorname{lcm}(95256,432)=2^{4} 3^{5} 7^{2}=190512$.

Corollary 5: $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$
Proof:

$$
\min (\alpha, \beta)+\max (\alpha, \beta)=\alpha+\beta
$$

Example: $4 \cdot 10=2 \cdot 20=\operatorname{gcd}(4,10) \cdot \operatorname{lcm}(4,10)$.

Modular Arithmetic

Remember: $a \equiv b(\bmod m)$ means a and b have the same remainder when divided by m.

- Equivalently: $a \equiv b(\bmod m)$ iff $m \mid(a-b)$
- a is congruent to $b \bmod m$

Theorem 7: If $a_{1} \equiv a_{2}(\bmod m)$ and $b_{1} \equiv b_{2}(\bmod m)$, then
(a) $\left(a_{1}+b_{1}\right) \equiv\left(a_{2}+b_{2}\right)(\bmod m)$
(b) $a_{1} b_{1} \equiv a_{2} b_{2}(\bmod m)$

Proof: Suppose

- $a_{1}=c_{1} m+r, a_{2}=c_{2} m+r$
- $b_{1}=d_{1} m+r^{\prime}, b_{2}=d_{2} m+r^{\prime}$

So

- $a_{1}+b_{1}=\left(c_{1}+d_{1}\right) m+\left(r+r^{\prime}\right)$
- $a_{2}+b_{2}=\left(c_{2}+d_{2}\right) m+\left(r+r^{\prime}\right)$
$m \mid\left(\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)=\left(\left(c_{1}+d_{1}\right)-\left(c_{2}+d_{2}\right)\right) m\right.$
- Conclusion: $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod m)$.

For multiplication:

- $a_{1} b_{1}=\left(c_{1} d_{1} m+r^{\prime} c_{1}+r d_{1}\right) m+r r^{\prime}$
- $a_{2} b_{2}=\left(c_{2} d_{2} m+r^{\prime} c_{2}+r d_{2}\right) m+r r^{\prime}$
$m \mid\left(a_{1} b_{1}-a_{2} b_{2}\right)$
- Conclusion: $a_{1} b_{1} \equiv a_{2} b_{2}(\bmod m)$.

Bottom line: addition and multiplication carry over to the modular world.

Modular arithmetic has lots of applications.

- Here are four ...

Hashing

Problem: How can we efficiently store, retrieve, and delete records from a large database?

- For example, students records.

Assume, each record has a unique key

- E.g. student ID, Social Security \#

Do we keep an array sorted by the key?

- Easy retrieval but difficult insertion and deletion.

How about a table with an entry for every possible key?

- Often infeasible, almost always wasteful.
- There are 10^{10} possible social security numbers.

Solution: store the records in an array of size N, where N is somewhat bigger than the expected number of records.

- Store record with id k in location $h(k)$
- h is the hash function
- Basic hash function: $h(k):=k(\bmod N)$.
- A collision occurs when $h\left(k_{1}\right)=h\left(k_{2}\right)$ and $k_{1} \neq k_{2}$.
- Choose N sufficiently large to minimize collisions
- Lots of techniques for dealing with collisions

Pseudorandom Sequences

For randomized algorithms we need a random number generator.

- Most languages provide you with a function "rand".
- There is nothing random about rand!
- It creates an apparently random sequence deterministically
- These are called pseudorandom sequences

A standard technique for creating psuedorandom sequences: the linear congruential method.

- Choose a modulus $m \in N^{+}$,
- a multiplier $a \in\{2,3, \ldots, m-1\}$, and
- an increment $c \in Z_{m}=\{0,1, \ldots, m-1\}$.
- Choose a seed $x_{0} \in Z_{m}$
- Typically the time on some internal clock is used
- Compute $x_{n+1}=a x_{n}+c(\bmod m)$.

Warning: a poorly implemented rand, such as in C, can wreak havoc on Monte Carlo simulations.

ISBN Numbers

Since 1968, most published books have been assigned a 10-digit ISBN numbers:

- identifies country of publication, publisher, and book itself
- The ISBN number for DAM3 is 1-56881-166-7

All the information is encoded in the first 9 digits

- The 10th digit is used as a parity check
- If the digits are a_{1}, \ldots, a_{10}, then we must have

$$
a_{1}+2 a_{2}+\cdots+9 a_{9}+10 a_{10} \equiv 0(\bmod 11)
$$

- For DAM3, get

$$
\begin{aligned}
& 1+2 \times 5+3 \times 6+4 \times 8+5 \times 8+6 \times 1 \\
& +7 \times 1+8 \times 6+9 \times 6+10 \times 7=286 \equiv 0(\bmod 11)
\end{aligned}
$$

- This test always detects errors in single digits and transposition errors
- Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes (UPC codes/bar codes) that appear on almost all items

- The numbers are encoded by thicknesses of bars, to make them machine readable

Casting out 9s

Notice that a number is equivalent to the sum of its digits mod 9 . This can be used as a way of checking your addition and of doing mindreading [come to class to hear more ...]

Linear Congruences

The equation $a x=b$ for $a, b \in R$ is uniquely solvable if $a \neq 0: x=b a^{-1}$.

- Can we also (uniquely) solve $a x \equiv b(\bmod m)$?
- If x_{0} is a solution, then so is $x_{0}+k m \forall k \in Z$ $\circ \ldots$ since $k m \equiv 0(\bmod m)$.

So, uniqueness can only be mod m.
But even mod m, there can be more than one solution:

- Consider $2 x \equiv 2(\bmod 4)$
- Clearly $x \equiv 1(\bmod 4)$ is one solution
- But so is $x \equiv 3(\bmod 4)$!

Theorem 8: If $\operatorname{gcd}(a, m)=1$ then there is a unique solution $(\bmod m)$ to $a x \equiv b(\bmod m)$.
Proof: Suppose $r, s \in Z$ both solve the equation:

- then $a r \equiv a s(\bmod m)$, so $m \mid a(r-s)$
- Since $\operatorname{gcd}(a, m)=1$, by Corollary $3, m \mid(r-s)$
- But that means $r \equiv s(\bmod m)$

So if there's a solution at all, then it's unique mod m.

Solving Linear Congruences

But why is there a solution to $a x \equiv b(\bmod m)$?
Key idea: find $a^{-1} \bmod m$; then $x \equiv b a^{-1}(\bmod m)$

- By Corollary 2 , since $\operatorname{gcd}(a, m)=1$, there exist s, t such that

$$
a s+m t=1
$$

- So $a s \equiv 1(\bmod m)$
- That means $s \equiv a^{-1}(\bmod m)$
- $x \equiv b s(\bmod m)$

The Chinese Remainder Theorem

Suppose we want to solve a system of linear congruences:
Example: Find x such that

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

Can we solve for x ? Is the answer unique?
Definition: m_{1}, \ldots, m_{n} are pairwise relatively prime if each pair m_{i}, m_{j} is relatively prime.

Theorem 9 (Chinese Remainder Theorem): Let

 $m_{1}, \ldots, m_{n} \in N^{+}$be pairwise relatively prime. The system$$
\begin{equation*}
x \equiv a_{i}\left(\bmod m_{i}\right) \quad i=1,2 \ldots n \tag{1}
\end{equation*}
$$

has a unique solution modulo $M=\Pi_{1}^{n} m_{i}$.

- The best we can hope for is uniqueness modulo M :
- If x is a solution then so is $x+k M$ for any $k \in Z$.

Proof: First I show that there is a solution; then I'll show it's unique.

CRT: Existence

Key idea for existence:
Suppose we can find y_{1}, \ldots, y_{n} such that

$$
\begin{aligned}
& y_{i} \equiv a_{i}\left(\bmod m_{i}\right) \\
& y_{i} \equiv 0\left(\bmod m_{j}\right) \quad \text { if } j \neq i .
\end{aligned}
$$

Now consider $y:=\sum_{j=1}^{n} y_{j}$.

$$
\sum_{j=1}^{n} y_{j} \equiv a_{i}\left(\bmod m_{i}\right)
$$

- Since $y_{i}=a_{i} \bmod m_{i}$ and $y_{j}=0 \bmod m_{j}$ if $j \neq i$.

So y is a solution!

- Now we need to find y_{1}, \ldots, y_{n}.
- Let $M_{i}=M / m_{i}=m_{1} \times \cdots \times m_{i-1} \times m_{i+1} \times \cdots \times m_{n}$.
- $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$, since m_{j} 's pairwise relatively prime - No common prime factors among any of the m_{j} 's Choose y_{i}^{\prime} such that $\left(M_{i}\right) y_{i}^{\prime} \equiv a_{i}\left(\bmod m_{i}\right)$ - Can do that by Theorem 8 , since $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$.

Let $y_{i}=y_{i}^{\prime} M_{i}$.

- y_{i} is a multiple of m_{j} if $j \neq i$, so $y_{i} \equiv 0\left(\bmod m_{j}\right)$ - $y_{i}=y_{i}^{\prime} M_{i} \equiv a_{i}\left(\bmod m_{i}\right)$ by construction.

So $y_{1}+\cdots+y_{n}$ is a solution to the system, $\bmod M$.

CRT: Example

Find x such that

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

Find y_{1} such that $y_{1} \equiv 2(\bmod 3), y_{1} \equiv 0(\bmod 5 / 7)$:

- y_{1} has the form $y_{1}^{\prime} \times 5 \times 7$
- $35 y_{1}^{\prime} \equiv 2(\bmod 3)$
- $y_{1}^{\prime}=1$, so $y_{1}=35$.

Find y_{2} such that $y_{2} \equiv 3(\bmod 5), y_{2} \equiv 0(\bmod 3 / 7)$:

- y_{2} has the form $y_{2}^{\prime} \times 3 \times 7$
- $21 y_{2}^{\prime} \equiv 3(\bmod 5)$
- $y_{2}^{\prime}=3$, so $y_{2}=63$.

Find y_{3} such that $y_{3} \equiv 2(\bmod 7), y_{3} \equiv 0(\bmod 3 / 5)$:

- y_{3} has the form $y_{3}^{\prime} \times 3 \times 5$
- $15 y_{3}^{\prime} \equiv 2(\bmod 7)$
- $y_{3}^{\prime}=2$, so $y_{3}=30$.

Solution is $x=y_{1}+y_{2}+y_{3}=35+63+30=128$

CRT: Uniqueness

What if x, y are both solutions to the equations?

- $x \equiv y\left(\bmod m_{i}\right) \Rightarrow m_{i} \mid(x-y)$, for $i=1, \ldots, n$
- Claim: $M=m_{1} \cdots m_{n} \mid(x-y)$
- so $x \equiv y(\bmod M)$

Theorem 10: If m_{1}, \ldots, m_{n} are pairwise relatively prime and $m_{i} \mid b$ for $i=1, \ldots, n$, then $m_{1} \cdots m_{n} \mid b$.
Proof: By induction on n.

- For $n=1$ the statement is trivial.

Suppose statement holds for $n=N$.

- Suppose m_{1}, \ldots, m_{N+1} relatively prime, $m_{i} \mid b$ for $i=1, \ldots, N+1$.
- by IH, $m_{1} \cdots m_{N} \mid b \Rightarrow b=m_{1} \cdots m_{N} c$ for some c
- By assumption, $m_{N+1} \mid b$, so $m \mid\left(m_{1} \cdots m_{N}\right) c$
- $\operatorname{gcd}\left(m_{1} \cdots m_{N}, m_{N+1}\right)=1$ (since m_{i} 's pairwise relatively prime \Rightarrow no common factors)
- by Corollary $3, m_{N+1} \mid c$
- so $c=d m_{N+1}, b=m_{1} \cdots m_{N} m_{N+1} d$
- so $m_{1} \cdots m_{N+1} \mid b$.

An Application of CRT: Computer Arithmetic with Large Integers

Suppose we want to perform arithmetic operations (addition, multiplication) with extremely large integers

- too large to be represented easily in a computer Idea:
- Step 1: Find suitable moduli m_{1}, \ldots, m_{n} so that m_{i} 's are relatively prime and $m_{1} \cdots m_{n}$ is bigger than the answer.
- Step 2: Perform all the operations $\bmod m_{j}, j=$ $1, \ldots, n$.
- This means we're working with much smaller numbers (no bigger than m_{j})
- The operations are much faster
- Can do this in parallel
- Suppose the answer $\bmod m_{j}$ is a_{j} :
- Use CRT to find x such that $x \equiv a_{j}\left(\bmod m_{j}\right)$
- The unique x such that $0<x<m_{1} \cdots m_{n}$ is the answer to the original problem.

Example: The following are pairwise relatively prime:

$$
2^{35}-1,2^{34}-1,2^{33}-1,2^{29}-1,2^{23}-1
$$

We can add and multiply positive integers up to

$$
\left(2^{35}-1\right)\left(2^{34}-1\right)\left(2^{33}-1\right)\left(2^{29}-1\right)\left(2^{23}-1\right)>2^{163}
$$

Fermat's Little Theorem

Theorem 11 (Fermat's Little Theorem):

(a) If p prime and $\operatorname{gcd}(p, a)=1$, then $a^{p-1} \equiv 1(\bmod p)$.
(b) For all $a \in Z, a^{p} \equiv a(\bmod p)$.

Proof. Let

$$
\begin{aligned}
& A=\{1,2, \ldots, p-1\} \\
& B=\{1 a \bmod p, 2 a \bmod p, \ldots,(p-1) a \bmod p\}
\end{aligned}
$$

Claim: $A=B$.

- $0 \notin B$, since $p \nless j a$, so $B \subset A$.
- If $i \neq j$, then $i a \bmod p \neq j a \bmod p$

$$
\text { - since } p \not \backslash(j-i) a
$$

Thus $|A|=p-1$, so $A=B$.
Therefore,

$$
\begin{aligned}
& \Pi_{i \in A} i \equiv \Pi_{i \in B} i(\bmod p) \\
\Rightarrow & (p-1)!\equiv a(2 a) \cdots(p-1) a=(p-1)!a^{p-1}(\bmod p) \\
\Rightarrow & p \mid\left(a^{p-1}-1\right)(p-1)! \\
\Rightarrow & p \mid\left(a^{p-1}-1\right)[\operatorname{since} \operatorname{gcd}(p,(p-1)!)=1] \\
\Rightarrow & a^{p-1} \equiv 1(\bmod p)
\end{aligned}
$$

It follows that $a^{p} \equiv a(\bmod p)$

- This is true even if $\operatorname{gcd}(p, a) \neq 1$; i.e., if $p \mid a$ Why is this being taught in a CS course?

