Example of Extended Euclidean Algorithm

Recall that
$$gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) = gcd(3, 0) = 3$$

We work backwards to write 3 as a linear combination of 84 and 33:

$$3 = 18 - 15$$

[Now 3 is a linear combination of 18 and 15]
 $= 18 - (33 - 18)$
 $= 2(18) - 33$
[Now 3 is a linear combination of 18 and 33]
 $= 2(84 - 2 \times 33)) - 33$
 $= 2 \times 84 - 5 \times 33$
[Now 3 is a linear combination of 84 and 33]

Some Consequences

Corollary 2: If a and b are relatively prime, then there exist s and t such that as + bt = 1.

Corollary 3: If gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$. Proof:

- Exist $s, t \in Z$ such that sa + tb = 1
- Multiply both sides by c: sac + tbc = c
- Since $a \mid bc$, $a \mid sac + tbc$, so $a \mid c$

Corollary 4: If p is prime and $p \mid \prod_{i=1}^{n} a_i$, then $p \mid a_i$ for some $1 \leq i \leq n$.

Proof: By induction on n:

• If n = 1: trivial.

Suppose the result holds for n and $p \mid \prod_{i=1}^{n+1} a_i$.

- note that $p \mid \prod_{i=1}^{n+1} a_i = (\prod_{i=1}^n a_i) a_{n+1}$.
- If $p \mid a_{n+1}$ we are done.
- If not, $gcd(p, a_{n+1}) = 1$.
- By Corollary 3, $p \mid \prod_{i=1}^n a_i$
- By the IH, $p \mid a_i$ for some $1 \leq i \leq n$.

The Fundamental Theorem of Arithmetic, II

Theorem 3: Every n > 1 can be represented uniquely as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong induction.

• Base case: Obvious if n=2.

Inductive step. Suppose OK for n' < n.

- Suppose that $n = \prod_{i=1}^{s} p_i = \prod_{j=1}^{r} q_j$.
- $p_1 \mid \prod_{j=1}^r q_j$, so by Corollary 4, $p_1 \mid q_j$ for some j.
- But then $p_1 = q_j$, since both p_1 and q_j are prime.
- But then $n/p_1 = p_2 \cdots p_s = q_1 \cdots q_{j-1} q_{j+1} \cdots q_r$
- Result now follows from I.H.

Characterizing the GCD and LCM

Theorem 6: Suppose $a = \prod_{i=1}^n p_i^{\alpha_i}$ and $b = \prod_{i=1}^n p_i^{\beta_i}$, where p_i are primes and $\alpha_i, \beta_i \in N$.

• Some α_i 's, β_i 's could be 0.

Then

$$\gcd(a,b) = \prod_{i=1}^{n} p_i^{\min(\alpha_i,\beta_i)}$$
$$\operatorname{lcm}(a,b) = \prod_{i=1}^{n} p_i^{\max(\alpha_i,\beta_i)}$$

Proof: For gcd, let $c = \prod_{i=1}^{n} p_i^{\min(\alpha_i, \beta_i)}$. Clearly $c \mid a$ and $c \mid b$.

• Thus, c is a common divisor, so $c \leq \gcd(a, b)$.

If $q^{\gamma} \mid \gcd(a, b)$,

- must have $q \in \{p_1, \dots, p_n\}$ • Otherwise $q \not\mid a$ so $q \not\mid \gcd(a, b)$ (likewise b) If $q = p_i, q^{\gamma} \mid \gcd(a, b)$, must have $\gamma \leq \min(\alpha_i, \beta_i)$ • E.g., if $\gamma > \alpha_i$, then $p_i^{\gamma} \not\mid a$
- Thus, $c \ge \gcd(a, b)$.

Conclusion: $c = \gcd(a, b)$.

For lcm, let $d = \prod_{i=1}^n p_i^{\max(\alpha_i, \beta_i)}$.

- Clearly $a \mid d, b \mid d$, so d is a common multiple.
- Thus, $d \ge \text{lcm}(a, b)$.

Suppose $lcm(a, b) = \prod_{i=1}^{n} p_i^{\gamma_i}$.

- Must have $\alpha_i \leq \gamma_i$, since $p_i^{\alpha_i} \mid a$ and $a \mid \text{lcm}(a, b)$.
- Similarly, must have $\beta_i \leq \gamma_i$.
- Thus, $\max(\alpha_i, \beta_i) \leq \gamma_i$.

Conclusion: d = lcm(a, b).

Example: $432 = 2^4 3^3$, and $95256 = 2^3 3^5 7^2$, so

- $\gcd(95256, 432) = 2^3 3^3 = 216$
- $lcm(95256, 432) = 2^4 3^5 7^2 = 190512.$

Corollary 5: $ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$

Proof:

$$\min(\alpha, \beta) + \max(\alpha, \beta) = \alpha + \beta.$$

Example: $4 \cdot 10 = 2 \cdot 20 = \gcd(4, 10) \cdot \operatorname{lcm}(4, 10)$.

Modular Arithmetic

Remember: $a \equiv b \pmod{m}$ means a and b have the same remainder when divided by m.

- Equivalently: $a \equiv b \pmod{m}$ iff $m \mid (a b)$
- a is congruent to $b \mod m$

Theorem 7: If $a_1 \equiv a_2 \pmod{m}$ and $b_1 \equiv b_2 \pmod{m}$, then

(a)
$$(a_1 + b_1) \equiv (a_2 + b_2) \pmod{m}$$

(b)
$$a_1b_1 \equiv a_2b_2 \pmod{m}$$

Proof: Suppose

$$\bullet \ a_1 = c_1 m + r, \ a_2 = c_2 m + r$$

•
$$b_1 = d_1 m + r'$$
, $b_2 = d_2 m + r'$

So

•
$$a_1 + b_1 = (c_1 + d_1)m + (r + r')$$

$$\bullet \ a_2 + b_2 = (c_2 + d_2)m + (r + r')$$

$$m \mid ((a_1 + b_1) - (a_2 + b_2) = ((c_1 + d_1) - (c_2 + d_2))m$$

• Conclusion: $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$.

For multiplication:

•
$$a_1b_1 = (c_1d_1m + r'c_1 + rd_1)m + rr'$$

$$a_2b_2 = (c_2d_2m + r'c_2 + rd_2)m + rr'$$

$$m \mid (a_1b_1 - a_2b_2)$$

• Conclusion: $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Bottom line: addition and multiplication carry over to the modular world.

Modular arithmetic has lots of applications.

• Here are four ...

Hashing

Problem: How can we efficiently store, retrieve, and delete records from a large database?

• For example, students records.

Assume, each record has a unique key

• E.g. student ID, Social Security #

Do we keep an array sorted by the key?

• Easy retrieval but difficult insertion and deletion.

How about a table with an entry for every possible key?

- Often infeasible, almost always wasteful.
- There are 10^{10} possible social security numbers.

Solution: store the records in an array of size N, where N is somewhat bigger than the expected number of records.

- Store record with id k in location h(k)
 - \circ h is the hash function
 - \circ Basic hash function: $h(k) := k \pmod{N}$.
- A collision occurs when $h(k_1) = h(k_2)$ and $k_1 \neq k_2$.
 - \circ Choose N sufficiently large to minimize collisions
- Lots of techniques for dealing with collisions

Pseudorandom Sequences

For randomized algorithms we need a random number generator.

- Most languages provide you with a function "rand".
- There is nothing random about rand!
 - It creates an apparently random sequence deterministically
 - These are called *pseudorandom sequences*

A standard technique for creating psuedorandom sequences: the *linear congruential method*.

- Choose a modulus $m \in N^+$,
- a multiplier $a \in \{2, 3, \dots, m-1\}$, and
- an increment $c \in Z_m = \{0, 1, \dots, m-1\}.$
- Choose a seed $x_0 \in Z_m$
 - Typically the time on some internal clock is used
- Compute $x_{n+1} = ax_n + c \pmod{m}$.

Warning: a poorly implemented rand, such as in C, can wreak havoc on Monte Carlo simulations.

ISBN Numbers

Since 1968, most published books have been assigned a 10-digit ISBN numbers:

- identifies country of publication, publisher, and book itself
- The ISBN number for DAM3 is 1-56881-166-7

All the information is encoded in the first 9 digits

- The 10th digit is used as a parity check
- If the digits are a_1, \ldots, a_{10} , then we must have $a_1 + 2a_2 + \cdots + 9a_9 + 10a_{10} \equiv 0 \pmod{11}$.
- For DAM3, get

$$1 + 2 \times 5 + 3 \times 6 + 4 \times 8 + 5 \times 8 + 6 \times 1$$

+7 × 1 + 8 × 6 + 9 × 6 + 10 × 7 = 286 \equiv 0 \text{ (mod 11)}

- This test always detects errors in single digits and transposition errors
 - Two arbitrary errors may cancel out

Similar parity checks are used in universal product codes (UPC codes/bar codes) that appear on almost all items

• The numbers are encoded by thicknesses of bars, to make them machine readable

Casting out 9s

Notice that a number is equivalent to the sum of its digits mod 9. This can be used as a way of checking your addition and of doing mindreading [come to class to hear more . . .]

Linear Congruences

The equation ax = b for $a, b \in R$ is uniquely solvable if $a \neq 0$: $x = ba^{-1}$.

- Can we also (uniquely) solve $ax \equiv b \pmod{m}$?
- If x_0 is a solution, then so is $x_0 + km \ \forall k \in \mathbb{Z}$ • ... since $km \equiv 0 \pmod{m}$.

So, uniqueness can only be mod m.

But even mod m, there can be more than one solution:

- Consider $2x \equiv 2 \pmod{4}$
- Clearly $x \equiv 1 \pmod{4}$ is one solution
- But so is $x \equiv 3 \pmod{4}$!

Theorem 8: If gcd(a, m) = 1 then there is a unique solution (mod m) to $ax \equiv b \pmod{m}$.

Proof: Suppose $r, s \in Z$ both solve the equation:

- then $ar \equiv as \pmod{m}$, so $m \mid a(r-s)$
- Since gcd(a, m) = 1, by Corollary 3, $m \mid (r s)$
- But that means $r \equiv s \pmod{m}$

So if there's a solution at all, then it's unique mod m.

Solving Linear Congruences

But why is there a solution to $ax \equiv b \pmod{m}$?

Key idea: find $a^{-1} \mod m$; then $x \equiv ba^{-1} \pmod m$

• By Corollary 2, since gcd(a, m) = 1, there exist s, t such that

$$as + mt = 1$$

- So $as \equiv 1 \pmod{m}$
- That means $s \equiv a^{-1} \pmod{m}$
- $x \equiv bs \pmod{m}$

The Chinese Remainder Theorem

Suppose we want to solve a system of linear congruences:

Example: Find x such that

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

Can we solve for x? Is the answer unique?

Definition: m_1, \ldots, m_n are pairwise relatively prime if each pair m_i, m_j is relatively prime.

Theorem 9 (Chinese Remainder Theorem): Let $m_1, \ldots, m_n \in N^+$ be pairwise relatively prime. The system

$$x \equiv a_i \pmod{m_i} \qquad i = 1, 2 \dots n \tag{1}$$

has a unique solution modulo $M = \prod_{i=1}^{n} m_i$.

- The best we can hope for is uniqueness modulo M:
 - \circ If x is a solution then so is x + kM for any $k \in \mathbb{Z}$.

Proof: First I show that there is a solution; then I'll show it's unique.

CRT: Existence

Key idea for existence:

Suppose we can find y_1, \ldots, y_n such that

$$y_i \equiv a_i \pmod{m_i}$$

 $y_i \equiv 0 \pmod{m_i}$ if $j \neq i$.

Now consider $y := \sum_{j=1}^{n} y_j$.

$$\sum_{j=1}^{n} y_j \equiv a_i \pmod{m_i}$$

- Since $y_i = a_i \mod m_i$ and $y_j = 0 \mod m_j$ if $j \neq i$. So y is a solution!
 - Now we need to find y_1, \ldots, y_n .
 - Let $M_i = M/m_i = m_1 \times \cdots \times m_{i-1} \times m_{i+1} \times \cdots \times m_n$.
 - gcd(M_i, m_i) = 1, since m_j's pairwise relatively prime
 No common prime factors among any of the m_j's
 - Choose y_i' such that $(M_i)y_i' \equiv a_i \pmod{m_i}$
 - Can do that by Theorem 8, since $gcd(M_i, m_i) = 1$. Let $y_i = y_i'M_i$.
 - $\circ y_i$ is a multiple of m_j if $j \neq i$, so $y_i \equiv 0 \pmod{m_j}$
 - $\circ y_i = y_i' M_i \equiv a_i \pmod{m_i}$ by construction.

So $y_1 + \cdots + y_n$ is a solution to the system, mod M.

CRT: Example

Find x such that

$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{7}$

Find y_1 such that $y_1 \equiv 2 \pmod{3}$, $y_1 \equiv 0 \pmod{5/7}$:

- y_1 has the form $y'_1 \times 5 \times 7$
- $35y_1' \equiv 2 \pmod{3}$
- $y_1' = 1$, so $y_1 = 35$.

Find y_2 such that $y_2 \equiv 3 \pmod{5}$, $y_2 \equiv 0 \pmod{3/7}$:

- y_2 has the form $y_2' \times 3 \times 7$
- $21y_2' \equiv 3 \pmod{5}$
- $y_2' = 3$, so $y_2 = 63$.

Find y_3 such that $y_3 \equiv 2 \pmod{7}$, $y_3 \equiv 0 \pmod{3/5}$:

- y_3 has the form $y_3' \times 3 \times 5$
- $15y_3' \equiv 2 \pmod{7}$
- $y_3' = 2$, so $y_3 = 30$.

Solution is $x = y_1 + y_2 + y_3 = 35 + 63 + 30 = 128$

CRT: Uniqueness

What if x, y are both solutions to the equations?

- $x \equiv y \pmod{m_i} \Rightarrow m_i \mid (x y), \text{ for } i = 1, \dots, n$
- Claim: $M = m_1 \cdots m_n \mid (x y)$
- so $x \equiv y \pmod{M}$

Theorem 10: If m_1, \ldots, m_n are pairwise relatively prime and $m_i \mid b$ for $i = 1, \ldots, n$, then $m_1 \cdots m_n \mid b$.

Proof: By induction on n.

• For n = 1 the statement is trivial.

Suppose statement holds for n = N.

- Suppose m_1, \ldots, m_{N+1} relatively prime, $m_i \mid b$ for $i = 1, \ldots, N+1$.
- by IH, $m_1 \cdots m_N \mid b \Rightarrow b = m_1 \cdots m_N c$ for some c
- By assumption, $m_{N+1} \mid b$, so $m \mid (m_1 \cdots m_N)c$
- $gcd(m_1 \cdots m_N, m_{N+1}) = 1$ (since m_i 's pairwise relatively prime \Rightarrow no common factors)
- by Corollary 3, $m_{N+1} \mid c$
- so $c = dm_{N+1}, b = m_1 \cdots m_N m_{N+1} d$
- so $m_1 \cdots m_{N+1} \mid b$.

An Application of CRT: Computer Arithmetic with Large Integers

Suppose we want to perform arithmetic operations (addition, multiplication) with extremely large integers

- too large to be represented easily in a computer Idea:
 - Step 1: Find suitable moduli m_1, \ldots, m_n so that m_i 's are relatively prime and $m_1 \cdots m_n$ is bigger than the answer.
 - Step 2: Perform all the operations mod m_j , $j = 1, \ldots, n$.
 - This means we're working with much smaller numbers (no bigger than m_i)
 - The operations are much faster
 - Can do this in parallel
 - Suppose the answer mod m_j is a_j :
 - Use CRT to find x such that $x \equiv a_j \pmod{m_j}$
 - The unique x such that $0 < x < m_1 \cdots m_n$ is the answer to the original problem.

Example: The following are pairwise relatively prime:

$$2^{35} - 1$$
, $2^{34} - 1$, $2^{33} - 1$, $2^{29} - 1$, $2^{23} - 1$

We can add and multiply positive integers up to

$$(2^{35} - 1)(2^{34} - 1)(2^{33} - 1)(2^{29} - 1)(2^{23} - 1) > 2^{163}.$$

Fermat's Little Theorem

Theorem 11 (Fermat's Little Theorem):

- (a) If p prime and gcd(p, a) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.
- (b) For all $a \in Z$, $a^p \equiv a \pmod{p}$.

Proof. Let

$$A = \{1, 2, \dots, p - 1\}$$

$$B = \{1a \mod p, 2a \mod p, \dots, (p - 1)a \mod p\}$$

Claim: A = B.

- $0 \notin B$, since $p \nmid ja$, so $B \subset A$.
- If $i \neq j$, then $ia \mod p \neq ja \mod p$ • since $p \not\mid (j-i)a$

Thus |A| = p - 1, so A = B.

Therefore,

$$\Pi_{i \in A} i \equiv \Pi_{i \in B} i \pmod{p}$$

$$\Rightarrow (p-1)! \equiv a(2a) \cdots (p-1)a = (p-1)! a^{p-1} \pmod{p}$$

$$\Rightarrow p \mid (a^{p-1}-1)(p-1)!$$

$$\Rightarrow p \mid (a^{p-1}-1) \text{ [since } \gcd(p,(p-1)!)=1]$$

$$\Rightarrow a^{p-1} \equiv 1 \pmod{p}$$

It follows that $a^p \equiv a \pmod{p}$

• This is true even if $gcd(p, a) \neq 1$; i.e., if $p \mid a$ Why is this being taught in a CS course?