Questions/Complaints About
Homework?

Here'’s the procedure for homework questions/complaints:
1. Read the solutions first.

2. Talk to the person who graded it (check initials)
3. 1f (1) and (2) don’t work, talk to me.

Further comments:
e There’s no statute of limitations on grade changes
o although asking questions right away is a good
strategy
e Remember that 10/12 homeworks count. Each one

is roughly worth 50 points, and homework is 35% of
your final grade.

o 16 homework points = 1% on your final grade

e Remember we're grading about 100 homeworks and
graders are not expected to be mind readers. TIt’s
your problem to write clearly.

e Don’t forget to staple your homework pages together,
add the cover sheet, and put your name on clearly.

o I'll deduct 2 points if that’s not the case

1

Algorithmic number theory

Number theory used to be viewed as the purest branch
of pure mathematics.

e Now it’s the basis for most modern cryptography.
e Absolutely critical for e-commerce
o How do you know your credit card number is safe?
Goal:

e To give you a basic understanding of the mathematics
behind the RSA cryptosystem

o Need to understand how prime numbers work

Division

For a,b € Z, a # 0, a divides b if there is some ¢ € Z
such that b = ac.

e Notation: a | b

e Examples: 39,3 f7
If a|b, then ais a factor of b, b is a multiple of a.
Theorem 1: If a,b,c € Z, then

lLifa|band a| cthen a| (b+ c).

2.1f a | b then a | (be)

3. Ifa | band b| cthen a | ¢ (divisibility is transitive).

Proof: How do you prove this? Use the definition!
e Eg. ifa|banda|c, then, for some d; and dy,

b=ad; and ¢ = ads.

e That means b+ ¢ = a(dy + da)
eSoal(b+c).

Other parts: homework.

Corollary 1: If a | b and a | ¢, then a | (mb + nc) for
any integers m and n.

The division algorithm

Theorem 2: Fora € Z and d € N, d > 0, there exist
unique ¢,7 € Z suchthata=q-d+rand 0 <r < d.

e 1 is the remainder when a is divided by d

Notation: r = a (mod d); a mod d =r
Examples:

e Dividing 101 by 11 gives a quotient of 9 and a remain-
der of 2 (101 = 2 (mod 11); 101 mod 11 = 2).

e Dividing 18 by 6 gives a quotient of 3 and a remainder
of 0 (18 = 0 (mod 6); 18 mod 6 = 0).
Proof: Let ¢ = |a/d]| and define r = a — ¢ - d.

eSoa=¢q-d+rwithqge Zand 0 <r < d (since
q-d<a).

But why are ¢ and d unique?

e Suppose q-d+7r = ¢ -d+r with ¢, € Z and
0<7' <d.

e Then (¢ — q)d = (r — 1) with —d <r —7r" < d.

e The lhs is divisible by d so r = v’ and we’re done.

4




olf p e N, p>1is prime if its only positive factors
are 1 and p.
e n € N is composite if n > 1 and n is not prime.
o If n is composite then a | n for some a € N with
l<a<n
o Can assume that a < y/n.

* Proof: By contradiction:
Suppose n = be, b > /n, ¢ > y/n. But then
bc > n, a contradiction.

Primes: 2,3,5,7,11,13, ...
Composites: 4,6,8,9,...

Primality testing

How can we tell if n € N is prime?
The naive approach: check if & | n for every 1 < k < n.
e But at least 10”1 numbers are < n, if n has m digits

o 1000 numbers less than 1000 (a 4-digit number)
0 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!
We can do a little better
e Skip the even numbers
e That saves a factor of 2 — not good enough
e Try only primes (Sieve of Eratosthenes)
o Still doesn’t help much
We can do much better:
e There is a polynomial time randomized algorithm
o We will discuss this when we talk about probability

e In 2002, Agarwal, Saxena, and Kayal gave a (non-
probabilistic) polynomial time algorithm

o Saxena and Kayal were undergrads in 2002!

6

The Fundamental Theorem of
Arithmetic

Theorem 3: Every natural number n > 1 can be
uniquely represented as a product of primes, written in
nondecreasing size.

e Examples: 54 =2-33 100 =22-5% 15=3-5.

Proving that that n can be written as a product of primes
is easy (by strong induction):

e Base case: 2 is the product of primes (just 2)

e Inductive step: If n > 2 is prime, we are done. If not,
n = ab.
o Must have a < n, b < n.
o By LLH., both a and b can be written as a product
of primes
o So n is product of primes

Proving uniqueness is harder.

e We'll do that in a few days ...

An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n,
then a is prime.

Proof: By contradiction. (Left to the reader.)

e A multiset is like a set, except repetitions are allowed

0 {{2,2,3,3,5}} is a multiset, not a set

PF(n): A prime factorization procedure

Input: n € N*
Output: PFS - a multiset of n’s prime factors
PFS =0
for a =2 to |\/n] do
if a | n then PFS := PF(n/a) U{{a}} return PFS
if PFS = () then PFS := {{n}} [n is prime]

Example: PF(7007) = {{7}}U PF(1001)
= {{7.7}}U PF(143)
= {{7,7,11}}U PF(13)
= {{7,7,11,13}}.

8




The Complexity of Factoring

Algorithm PF runs in exponential time:

e We're checking every number up to y/n
Can we do better?

e We don’t know.

e Modern-day cryptography implicitly depends on the
fact that we can’t!

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes.
Proof: By contradiction.
e Suppose that there are only finitely many primes:
D1y« Pa-
e Consider g =p; X --- X p, +1
e Clearly ¢ > p1, ..., P, s0 it can’t be prime.

e So ¢ must have a prime factor, which must be one of
Pls- - -, P (since these are the only primes).

e Suppose it is p;.
o Then p; | g and p; | p1 X -+ X py
oSop;|(g—p1x--xpy);ie, p; |1 (Corollary 1)
o Contradiction!
Largest currently-known prime (as of 5/04):
o 224036583 _ 1. 7235733 digits
o Check www.utm.edu/research/primes

Primes of the form 2 — 1 where p is prime are called
Mersenne primes.

e Scarch for large primes focuses on Mersenne primes

10

The distribution of primes

There are quite a few primes out there:
e Roughly one in every log(n) numbers is prime

Formally: let 7(n) be the number of primes < n:

Prime Number Theorem: w(n) ~ n/log(n); that
is

Jin, w(n)/(n/ Tog(n)) = 1
Why is this important?
e Cryptosystems like RSA use a secret key that is the
product of two large (100-digit) primes.
e How do you find two large primes?

o Roughly one of every 100 100-digit numbers is prime
o To find a 100-digit prime;
* Keep choosing odd numbers at random
% Check if they are prime (using fast randomized
primality test)
* Keep trying until you find one
* Roughly 100 attempts should do it

(Some) Open Problems Involving
Primes

e Are there infinitely many Mersenne primes?

e Goldbach’s Conjecture: every even number greater
than 2 is the sum of two primes.

oEg,6=3+320=17+3,28=17+11

o This has been checked out to 6 x 10 (as of 2003)

o Every sufficiently large integer (> 10*%01) is the
sum of four primes

e Two prime numbers that differ by two are twin primes

o E.g: (35), (57), (11,13), (17,19), (41,43)

o also 4,648,619, 711, 505 x 200090 4 11
Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one
has proved them.




Greatest Common Divisor (gcd)

Definition: Fora € Z let D(a) ={k € N : k| a}

e D(a) = {divisors of a}.
Claim. |D(a)| < oo if (and only if) a # 0.
Proof: If a # 0 and k | a, then 0 < k < a.
Definition: For a,b € Z, C'D(a,b) = D(a) N D(b) is
the set of common divisors of a, b.

Definition: The greatest common divisor of a and b
is

ged(a, b) = max(C'D(a,b)).
Examples:
e 9cd(6,9) =3
o gcd(13,100) = 1
e gcd(6,45) =3
Def. a and b are relatively prime if ged(a, b) = 1.
e Example: 4 and 9 are relatively prime.

e Two numbers are relatively prime iff they have no
common prime factors.

Efficient computation of ged(a, b) lies at the heart of com-
mercial cryptography.

Least Common Multiple (lcm)

Definition: The least common multiple of a,b € N,
lem(a, b), is the smallest n € N7 such that a | n and
b|n.

e Examples: lem(4,9) = 36, lem(4, 10) = 20.

Computing the GCD

There is a method for calculating the ged that goes back
to Euclid:

e Recall: if n > m and ¢ divides both n and m, then
q divides n — m and n + m.

Therefore ged(n, m) = ged(m,n —m).

e Proof: Show that C'D(n,m) = CD(m,n — m); i.e.
show that ¢ divides both n and m iff ¢ divides both
m and n —m. (If ¢ divides n and m, then ¢ divides
n — m by the argument above. If ¢ divides m and
n — m, then ¢ divides m + (n —m) = n.)

e This allows us to reduce the ged computation to a
simpler case.

We can do even better:
e gcd(n, m) = ged(m,n —m) = ged(m,n—2m) = ...
e keep going as long as n — gm > 0 — |n/m] steps
Consider ged(6,45):
e |45/6] = 7; remainder is 3 (45 = 3 (mod 6))
e gcd(6,45) = ged(6,45 — 7 x 6) = ged(6,3) = 3

We can keep this up this procedure to compute ged(ny, ns):
o If ny > ny, write ny as qyng + 11, where 0 < r; < ny
oq1= [ni/ng)
e gcd(ng, ng) = ged(ry, no)
e Now r; < no, so switch their roles:
® Ny = @ory + 19, Where 0 < 79 < 1y
o gcd(ry, ng) = ged(ry, 72)
e Notice that max(nq, ng) > max(ry, ne) > max(ry, 72)

e Keep going until we have a remainder of 0 (i.e., some-
thing of the form ged(ry, 0) or (ged(0, 7))

o This is bound to happen sooner or later




Euclid’s Algorithm

Input m, n [m, n natural numbers, m > n]
num < m; denom < n [Initialize num and denom)
repeat until denom =0

q < | num/denom|

rem «— num — (g * denom) [num mod denom = rem|

num «— denom [New num]

denom «— rem [New denom; note num > denom)
endrepeat

Output num [num = ged(m, n)]

Example: ged(84, 33)

Iteration 1: num = 84, denom = 33, ¢ =2, rem = 18
Iteration 2: num = 33, denom =18, ¢g=1, rem =15
Iteration 3: num = 18, denom =15 g=1, rem =3
Iteration 4: num = 15, denom =3, ¢=15, rem =0
Iteration 5: num = 3, denom = 0 = ged(84,33) = 3

Euclid’s Algorithm: Correctness

How do we know this works?
e We need to prove that

(a) the algorithm terminates and

(b) that it correctly computes the ged
We prove (a) and (b) simultaneously by finding appropri-
ate loop invariants and using induction:

e Notation: Let numy and denomy, be the values of
num and denom at the beginning of the kth iteration.

P(k) has three parts:

(
)
)
)

(1
2
(

3) ged(numy,, denomy,) = ged(m, n)

0 < numyq + denomy1 < numy, + denomy,

0 < denomy, < numy,.

e Termination follows from parts (1) and (2): if
numy. + denomy. decreases and 0 < denomy, < numy,
then eventually denomy must hit 0.

e Correctness follows from part (3).

e The induction step is proved by looking at the details
of the loop.

Euclid’s Algorithm: Complexity

Input m, n [m, n natural numbers, m > n]
num < m; denom «— n [Initialize num and denom)
repeat until denom =0

q < | num/denom|

rem «— num — (q* denom)

num «— denom [New num]

denom «— rem [New denom; note num > denom)
endrepeat

Output num [num = ged(m, n)]

How many times do we go through the loop in the Eu-
clidean algorithm:

e Best case: Easy. Never!

e Average case: Too hard

e Worst case: Can’t answer this exactly, but we can get
a good upper bound.

o See how fast denom goes down in each iteration.

Claim: After two iterations, denom is halved:

e Recall num = q * denom + rem. Use denom’ and
" :
denom’ to denote value of denom after 1 and 2 iter-
ations. Two cases:

1. rem < denom/2 = denom’ < denom/2 and
denom” < denom/2.

2. rem > denom/2. But then num’' = denom,
denom’ = rem. At next iteration, ¢ = 1, and
denom” = rem’ = num' — denom’ < denom,/2

e How long until denom is < 17
o < 2logy(m) steps!

o After at most 2log,(m) steps, denom = 0.




The Extended Euclidean Algorithm

Theorem 5: For a,b € N, not both 0, we can compute
s,t € Z such that

ged(a, b) = sa + tb.
e Example: ged(9,4) =1=1-9+ (-2) - 4.

Proof: By strong induction on max(a, b). Suppose with-
out loss of generality a < b.
o If max(a,b) = 1, then must have b = 1, ged(a, b) =1
oged(a,b)=0-a+1-0.
e If max(a,b) > 1, there are three cases:
o a=0; then ged(0,b) =b=0-a+1-b
o a = b; then ged(a,b) =a=1-a+0-b
olf 0 < a < b, then ged(a,b) = ged(a,b — a).
Moreover, max(a,b) > max(a,b — a). Thus, by
[H, we can compute s, t such that

ged(a, b) = ged(a, b—a) = sa+t(b—a) = (s—t)a+tb.

Note: this computation basically follows the “recipe” of
Euclid’s algorithm.

Example of Extended Euclidean
Algorithm

Recall that ged(84,33) = ged(33,18) = ged(18,15) =
ged(15,3) = ged(3,0) = 3

We work backwards to write 3 as a linear combination of
84 and 33:
3=18-15
[Now 3 is a linear combination of 18 and 15]
=18 — (33— 18)
=2(18) — 33
[Now 3 is a linear combination of 18 and 33]
=2(84—-2x33)—33
=2x8—5x33
[Now 3 is a linear combination of 84 and 33]

Some Consequences

Corollary 2: If a and b are relatively prime, then there
exist s and ¢ such that as + bt = 1.

Corollary 3: If ged(a,b) = 1 and a | be, then a | c.
Proof:

e Exist s,t € Z such that sa +th=1

e Multiply both sides by ¢: sac + tbc = ¢

e Since a | be, a | sac+ tbe,so a | ¢
Corollary 4: If p is prime and p | I ; a;, then p | a;
for some 1 <4 < n.
Proof: By induction on n:

o [f n = 1: trivial.
Suppose the result holds for n and p | 11"} a;.

e note that p | 1"} a; = (117, a;) @, 1.

e If p | a,.1 we are done.

e If not, ged(p, any1) = 1.

e By Corollary 3, p | [T, a;

e By the IH, p | a; for some 1 <4 < n.

23

The Fundamental Theorem of
Arithmetic, 11

Theorem 3: Every n > 1 can be represented uniquely
as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong
induction.

e Base case: Obvious if n = 2.
Inductive step. Suppose OK for n’ < n.
e Suppose that n =1I7_; p; = H;Zl qj-

o | IT%_; g, so by Corollary 4, py | ¢; for some j.

e But then p; = g, since both p; and ¢; are prime.

e But then n/p1 =p2- ps=qi -+ ¢j-1gj+1 " ¢

e Result now follows from I.H.




