Questions/Complaints About Homework?

Here's the procedure for homework questions/complaints:

1. Read the solutions first.
2. Talk to the person who graded it (check initials)
3. If (1) and (2) don't work, talk to me.

Further comments:

- There's no statute of limitations on grade changes
o although asking questions right away is a good strategy
- Remember that $10 / 12$ homeworks count. Each one is roughly worth 50 points, and homework is 35% of your final grade.
- 16 homework points $=1 \%$ on your final grade
- Remember we're grading about 100 homeworks and graders are not expected to be mind readers. It's your problem to write clearly.
- Don't forget to staple your homework pages together, add the cover sheet, and put your name on clearly.
- I'll deduct 2 points if that's not the case

Algorithmic number theory

Number theory used to be viewed as the purest branch of pure mathematics.

- Now it's the basis for most modern cryptography.
- Absolutely critical for e-commerce
- How do you know your credit card number is safe? Goal:
- To give you a basic understanding of the mathematics behind the RSA cryptosystem
- Need to understand how prime numbers work

Division

For $a, b \in Z, a \neq 0, a$ divides b if there is some $c \in Z$ such that $b=a c$.

- Notation: $a \mid b$
- Examples: $3 \mid 9,3 \nless 7$

If $a \mid b$, then a is a factor of b, b is a multiple of a.
Theorem 1: If $a, b, c \in Z$, then

1. if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$.
2. If $a \mid b$ then $a \mid(b c)$
3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

- E.g., if $a \mid b$ and $a \mid c$, then, for some d_{1} and d_{2},

$$
b=a d_{1} \text { and } c=a d_{2} .
$$

- That means $b+c=a\left(d_{1}+d_{2}\right)$
- So $a \mid(b+c)$.

Other parts: homework.
Corollary 1: If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ for any integers m and n.

The division algorithm

Theorem 2: For $a \in Z$ and $d \in N, d>0$, there exist unique $q, r \in Z$ such that $a=q \cdot d+r$ and $0 \leq r<d$.

- r is the remainder when a is divided by d

Notation: $r \equiv a(\bmod d) ; a \bmod d=r$

Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of $2(101 \equiv 2(\bmod 11) ; 101 \bmod 11=2)$.
- Dividing 18 by 6 gives a quotient of 3 and a remainder of $0(18 \equiv 0(\bmod 6) ; 18 \bmod 6=0)$.

Proof: Let $q=\lfloor a / d\rfloor$ and define $r=a-q \cdot d$.

- So $a=q \cdot d+r$ with $q \in Z$ and $0 \leq r<d$ (since $q \cdot d \leq a)$.
But why are q and d unique?
- Suppose $q \cdot d+r=q^{\prime} \cdot d+r^{\prime}$ with $q^{\prime}, r^{\prime} \in Z$ and $0 \leq r^{\prime}<d$.
- Then $\left(q^{\prime}-q\right) d=\left(r-r^{\prime}\right)$ with $-d<r-r^{\prime}<d$.
- The lhs is divisible by d so $r=r^{\prime}$ and we're done.

Primes

- If $p \in N, p>1$ is prime if its only positive factors are 1 and p.
- $n \in N$ is composite if $n>1$ and n is not prime.
- If n is composite then $a \mid n$ for some $a \in N$ with $1<a<n$
- Can assume that $a \leq \sqrt{n}$.
* Proof: By contradiction:

Suppose $n=b c, b>\sqrt{n}, c>\sqrt{n}$. But then $b c>n$, a contradiction.

Primes: $2,3,5,7,11,13, \ldots$
Composites: $4,6,8,9, \ldots$

Primality testing

How can we tell if $n \in N$ is prime?
The naive approach: check if $k \mid n$ for every $1<k<n$.

- But at least 10^{m-1} numbers are $\leq n$, if n has m digits
- 1000 numbers less than 1000 (a 4-digit number)
- 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!
We can do a little better

- Skip the even numbers
- That saves a factor of $2 \longrightarrow$ not good enough
- Try only primes (Sieve of Eratosthenes)
- Still doesn't help much

We can do much better:

- There is a polynomial time randomized algorithm
- We will discuss this when we talk about probability
- In 2002, Agarwal, Saxena, and Kayal gave a (nonprobabilistic) polynomial time algorithm
- Saxena and Kayal were undergrads in 2002!

The Fundamental Theorem of Arithmetic

Theorem 3: Every natural number $n>1$ can be uniquely represented as a product of primes, written in nondecreasing size.

- Examples: $54=2 \cdot 3^{3}, 100=2^{2} \cdot 5^{2}, 15=3 \cdot 5$.

Proving that that n can be written as a product of primes is easy (by strong induction):

- Base case: 2 is the product of primes (just 2)
- Inductive step: If $n>2$ is prime, we are done. If not, $n=a b$.
- Must have $a<n, b<n$.
- By I.H., both a and b can be written as a product of primes
- So n is product of primes

Proving uniqueness is harder.

- We'll do that in a few days ...

An Algorithm for Prime Factorization

Fact: If a is the smallest number >1 that divides n, then a is prime.

Proof: By contradiction. (Left to the reader.)

- A multiset is like a set, except repetitions are allowed - $\{\{2,2,3,3,5\}\}$ is a multiset, not a set

PF(n): A prime factorization procedure

Input: $n \in N^{+}$
Output: PFS - a multiset of n 's prime factors PFS := \emptyset
for $a=2$ to $\lfloor\sqrt{n}\rfloor$ do
if $a \mid n$ then PFS $:=\operatorname{PF}(n / a) \cup\{\{a\}\}$ return PFS if PFS $=\emptyset$ then PFS $:=\{\{n\}\} \quad[n$ is prime $]$

$$
\text { Example: } \begin{aligned}
\operatorname{PF}(7007) & =\{\{7\}\} \cup \operatorname{PF}(1001) \\
& =\{\{7,7\}\} \cup \operatorname{PF}(143) \\
& =\{\{7,7,11\}\} \cup \operatorname{PF}(13) \\
& =\{\{7,7,11,13\}\} .
\end{aligned}
$$

The Complexity of Factoring

Algorithm PF runs in exponential time:

- We're checking every number up to \sqrt{n}

Can we do better?

- We don't know.
- Modern-day cryptography implicitly depends on the fact that we can't!

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes. Proof: By contradiction.

- Suppose that there are only finitely many primes: p_{1}, \ldots, p_{n}.
- Consider $q=p_{1} \times \cdots \times p_{n}+1$
- Clearly $q>p_{1}, \ldots, p_{n}$, so it can't be prime.
- So q must have a prime factor, which must be one of p_{1}, \ldots, p_{n} (since these are the only primes).
- Suppose it is p_{i}.
- Then $p_{i} \mid q$ and $p_{i} \mid p_{1} \times \cdots \times p_{n}$
- So $p_{i} \mid\left(q-p_{1} \times \cdots \times p_{n}\right)$; i.e., $p_{i} \mid 1$ (Corollary 1) - Contradiction!

Largest currently-known prime (as of 5/04):

- $2^{24036583}-1$: 7235733 digits
- Check www.utm.edu/research/primes

Primes of the form $2^{p}-1$ where p is prime are called Mersenne primes.

- Search for large primes focuses on Mersenne primes

The distribution of primes

There are quite a few primes out there:

- Roughly one in every $\log (n)$ numbers is prime

Formally: let $\pi(n)$ be the number of primes $\leq n$:
Prime Number Theorem: $\pi(n) \sim n / \log (n)$; that is,

$$
\lim _{n \rightarrow \infty} \pi(n) /(n / \log (n))=1
$$

Why is this important?

- Cryptosystems like RSA use a secret key that is the product of two large (100-digit) primes.
- How do you find two large primes?
- Roughly one of every 100 100-digit numbers is prime - To find a 100-digit prime;
* Keep choosing odd numbers at random
* Check if they are prime (using fast randomized primality test)
* Keep trying until you find one
* Roughly 100 attempts should do it

(Some) Open Problems Involving Primes

- Are there infinitely many Mersenne primes?
- Goldbach's Conjecture: every even number greater than 2 is the sum of two primes.
- E.g., $6=3+3,20=17+3,28=17+11$
- This has been checked out to 6×10^{16} (as of 2003)
- Every sufficiently large integer ($>10^{43,000}$!) is the sum of four primes
- Two prime numbers that differ by two are twin primes - E.g.: $(3,5),(5,7),(11,13),(17,19),(41,43)$ - also $4,648,619,711,505 \times 2^{60,000} \pm 1$!

Are there infinitely many twin primes?
All these conjectures are believed to be true, but no one has proved them.

Greatest Common Divisor (gcd)

Definition: For $a \in Z$ let $D(a)=\{k \in N: k \mid a\}$

- $D(a)=\{$ divisors of $a\}$.

Claim. $|D(a)|<\infty$ if (and only if) $a \neq 0$.
Proof: If $a \neq 0$ and $k \mid a$, then $0<k<a$.
Definition: For $a, b \in Z, C D(a, b)=D(a) \cap D(b)$ is the set of common divisors of a, b.
Definition: The greatest common divisor of a and b is

$$
\operatorname{gcd}(a, b)=\max (C D(a, b)) .
$$

Examples:

- $\operatorname{gcd}(6,9)=3$
- $\operatorname{gcd}(13,100)=1$
- $\operatorname{gcd}(6,45)=3$

Def. a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.

- Example: 4 and 9 are relatively prime.
- Two numbers are relatively prime iff they have no common prime factors.
Efficient computation of $\operatorname{gcd}(a, b)$ lies at the heart of commercial cryptography.

Least Common Multiple (lcm)

Definition: The least common multiple of $a, b \in N^{+}$, $\operatorname{lcm}(a, b)$, is the smallest $n \in N^{+}$such that $a \mid n$ and $b \mid n$.

- Examples: $\operatorname{lcm}(4,9)=36, \operatorname{lcm}(4,10)=20$.

Computing the GCD

There is a method for calculating the gcd that goes back to Euclid:

- Recall: if $n>m$ and q divides both n and m, then q divides $n-m$ and $n+m$.

Therefore $\operatorname{gcd}(n, m)=\operatorname{gcd}(m, n-m)$.

- Proof: Show that $C D(n, m)=C D(m, n-m)$; i.e. show that q divides both n and m iff q divides both m and $n-m$. (If q divides n and m, then q divides $n-m$ by the argument above. If q divides m and $n-m$, then q divides $m+(n-m)=n$.)
- This allows us to reduce the gcd computation to a simpler case.

We can do even better:

- $\operatorname{gcd}(n, m)=\operatorname{gcd}(m, n-m)=\operatorname{gcd}(m, n-2 m)=\ldots$
- keep going as long as $n-q m \geq 0-\lfloor n / m\rfloor$ steps Consider $\operatorname{gcd}(6,45)$:
- $\lfloor 45 / 6\rfloor=7$; remainder is $3(45 \equiv 3(\bmod 6))$
- $\operatorname{gcd}(6,45)=\operatorname{gcd}(6,45-7 \times 6)=\operatorname{gcd}(6,3)=3$

We can keep this up this procedure to compute $\operatorname{gcd}\left(n_{1}, n_{2}\right)$:

- If $n_{1} \geq n_{2}$, write n_{1} as $q_{1} n_{2}+r_{1}$, where $0 \leq r_{1}<n_{2}$ - $q_{1}=\left\lfloor n_{1} / n_{2}\right\rfloor$
- $\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(r_{1}, n_{2}\right)$
- Now $r_{1}<n_{2}$, so switch their roles:
- $n_{2}=q_{2} r_{1}+r_{2}$, where $0 \leq r_{2}<r_{1}$
- $\operatorname{gcd}\left(r_{1}, n_{2}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)$
- Notice that $\max \left(n_{1}, n_{2}\right)>\max \left(r_{1}, n_{2}\right)>\max \left(r_{1}, r_{2}\right)$
- Keep going until we have a remainder of 0 (i.e., something of the form $\operatorname{gcd}\left(r_{k}, 0\right)$ or $\left(\operatorname{gcd}\left(0, r_{k}\right)\right)$
- This is bound to happen sooner or later

Euclid's Algorithm

Input m, n [m, n natural numbers, $m \geq n$] num $\leftarrow m$; denom $\leftarrow n \quad$ [Initialize $n u m$ and denom] repeat until denom $=0$
$q \leftarrow\lfloor$ num / denom \rfloor
$r e m \leftarrow$ num $-(q *$ denom $)[$ num \bmod denom $=$ rem $]$
num \leftarrow denom
[New num]
denom \leftarrow rem $[$ New denom; note $n u m \geq$ denom $]$ endrepeat
Output num $[n u m=\operatorname{gcd}(m, n)]$
Example: $\operatorname{gcd}(84,33)$
Iteration 1: $n u m=84$, denom $=33, q=2$, rem $=18$ Iteration 2: num $=33$, denom $=18, q=1$, rem $=15$
Iteration 3: $n u m=18$, denom $=15, q=1$, rem $=3$
Iteration 4: num $=15$, denom $=3, q=5$, rem $=0$ Iteration 5: $n u m=3$, denom $=0 \Rightarrow \operatorname{gcd}(84,33)=3$

Euclid's Algorithm: Correctness

How do we know this works?

- We need to prove that
(a) the algorithm terminates and
(b) that it correctly computes the gcd

We prove (a) and (b) simultaneously by finding appropriate loop invariants and using induction:

- Notation: Let $n u m_{k}$ and denom $_{k}$ be the values of num and denom at the beginning of the k th iteration. $P(k)$ has three parts:
(1) $0<$ num $_{k+1}+$ denom $_{k+1}<$ num $_{k}+$ denom $_{k}$
(2) $0 \leq$ denom $_{k} \leq$ num $_{k}$.
(3) $\operatorname{gcd}\left(n u m_{k}\right.$, denom $\left._{k}\right)=\operatorname{gcd}(m, n)$
- Termination follows from parts (1) and (2): if $n u m_{k}+$ denom $_{k}$ decreases and $0 \leq$ denom $_{k} \leq$ num $_{k}$, then eventually denom $_{k}$ must hit 0 .
- Correctness follows from part (3).
- The induction step is proved by looking at the details of the loop.

Euclid's Algorithm: Complexity

Input m, n [m, n natural numbers, $m \geq n$] num $\leftarrow m$; denom $\leftarrow n \quad$ [Initialize $n u m$ and denom] repeat until denom $=0$
$q \leftarrow\lfloor$ num / denom \rfloor
$r e m \leftarrow$ num $-(q *$ denom $)$
num \leftarrow denom
[New num]
denom \leftarrow rem $[$ New denom; note num \geq denom $]$ endrepeat
Output num $[n u m=\operatorname{gcd}(m, n)]$
How many times do we go through the loop in the Euclidean algorithm:

- Best case: Easy. Never!
- Average case: Too hard
- Worst case: Can't answer this exactly, but we can get a good upper bound.
- See how fast denom goes down in each iteration.

Claim: After two iterations, denom is halved:

- Recall num $=q *$ denom + rem. Use denom ${ }^{\prime}$ and denom" to denote value of denom after 1 and 2 iterations. Two cases:

1. rem \leq denom $/ 2 \Rightarrow$ denom $^{\prime} \leq$ denom $/ 2$ and denom ${ }^{\prime \prime}<$ denom/2.
2. rem $>$ denom $/ 2$. But then num $^{\prime}=$ denom, denom ${ }^{\prime}=$ rem. At next iteration, $q=1$, and denom $^{\prime \prime}=$ rem $^{\prime}=$ num $^{\prime}-$ denom $^{\prime}<$ denom $/ 2$

- How long until denom is ≤ 1 ?
$0<2 \log _{2}(m)$ steps!
- After at most $2 \log _{2}(m)$ steps, denom $=0$.

The Extended Euclidean Algorithm

Theorem 5: For $a, b \in N$, not both 0 , we can compute $s, t \in Z$ such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

- Example: $\operatorname{gcd}(9,4)=1=1 \cdot 9+(-2) \cdot 4$.

Proof: By strong induction on $\max (a, b)$. Suppose without loss of generality $a \leq b$.

- If $\max (a, b)=1$, then must have $b=1, \operatorname{gcd}(a, b)=1$ - $\operatorname{gcd}(a, b)=0 \cdot a+1 \cdot b$.
- If $\max (a, b)>1$, there are three cases:
- $a=0$; then $\operatorname{gcd}(0, b)=b=0 \cdot a+1 \cdot b$
- $a=b$; then $\operatorname{gcd}(a, b)=a=1 \cdot a+0 \cdot b$
- If $0<a<b$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)$. Moreover, $\max (a, b)>\max (a, b-a)$. Thus, by IH, we can compute s, t such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)=s a+t(b-a)=(s-t) a+t b$.

Note: this computation basically follows the "recipe" of Euclid's algorithm.

Example of Extended Euclidean Algorithm

Recall that $\operatorname{gcd}(84,33)=\operatorname{gcd}(33,18)=\operatorname{gcd}(18,15)=$ $\operatorname{gcd}(15,3)=\operatorname{gcd}(3,0)=3$

We work backwards to write 3 as a linear combination of 84 and 33 :

$$
3=18-15
$$

[Now 3 is a linear combination of 18 and 15]
$=18-(33-18)$
$=2(18)-33$
[Now 3 is a linear combination of 18 and 33]
$=2(84-2 \times 33))-33$
$=2 \times 84-5 \times 33$
[Now 3 is a linear combination of 84 and 33]

Some Consequences

Corollary 2: If a and b are relatively prime, then there exist s and t such that $a s+b t=1$.

Corollary 3: If $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$. Proof:

- Exist $s, t \in Z$ such that $s a+t b=1$
- Multiply both sides by $c: s a c+t b c=c$
- Since $a|b c, a| s a c+t b c$, so $a \mid c$

Corollary 4: If p is prime and $p \mid \prod_{i=1}^{n} a_{i}$, then $p \mid a_{i}$ for some $1 \leq i \leq n$.
Proof: By induction on n :

- If $n=1$: trivial.

Suppose the result holds for n and $p \mid \prod_{i=1}^{n+1} a_{i}$.

- note that $p \mid \Pi_{i=1}^{n+1} a_{i}=\left(\prod_{i=1}^{n} a_{i}\right) a_{n+1}$.
- If $p \mid a_{n+1}$ we are done.
- If not, $\operatorname{gcd}\left(p, a_{n+1}\right)=1$.
- By Corollary 3, $p \mid \Pi_{i=1}^{n} a_{i}$
- By the IH, $p \mid a_{i}$ for some $1 \leq i \leq n$.

The Fundamental Theorem of Arithmetic, II

Theorem 3: Every $n>1$ can be represented uniquely as a product of primes, written in nondecreasing size.
Proof: Still need to prove uniqueness. We do it by strong induction.

- Base case: Obvious if $n=2$.

Inductive step. Suppose OK for $n^{\prime}<n$.

- Suppose that $n=\prod_{i=1}^{s} p_{i}=\prod_{j=1}^{r} q_{j}$.
- $p_{1} \mid \Pi_{j=1}^{r} q_{j}$, so by Corollary $4, p_{1} \mid q_{j}$ for some j.
- But then $p_{1}=q_{j}$, since both p_{1} and q_{j} are prime.
- But then $n / p_{1}=p_{2} \cdots p_{s}=q_{1} \cdots q_{j-1} q_{j+1} \cdots q_{r}$
- Result now follows from I.H.

