
Questions/Complaints About
Homework?

Here’s the procedure for homework questions/complaints:

1. Read the solutions first.

2. Talk to the person who graded it (check initials)

3. If (1) and (2) don’t work, talk to me.

Further comments:

• There’s no statute of limitations on grade changes

◦ although asking questions right away is a good
strategy

• Remember that 10/12 homeworks count. Each one
is roughly worth 50 points, and homework is 35% of
your final grade.

◦ 16 homework points = 1% on your final grade

• Remember we’re grading about 100 homeworks and
graders are not expected to be mind readers. It’s
your problem to write clearly.

• Don’t forget to staple your homework pages together,
add the cover sheet, and put your name on clearly.

◦ I’ll deduct 2 points if that’s not the case

1

Algorithmic number theory

Number theory used to be viewed as the purest branch
of pure mathematics.

• Now it’s the basis for most modern cryptography.

• Absolutely critical for e-commerce

◦ How do you know your credit card number is safe?

Goal:

• To give you a basic understanding of the mathematics
behind the RSA cryptosystem

◦ Need to understand how prime numbers work

2

Division

For a, b ∈ Z, a 6= 0, a divides b if there is some c ∈ Z
such that b = ac.

• Notation: a | b
• Examples: 3 | 9, 3 6 | 7

If a | b, then a is a factor of b, b is a multiple of a.

Theorem 1: If a, b, c ∈ Z, then

1. if a | b and a | c then a | (b + c).

2. If a | b then a | (bc)
3. If a | b and b | c then a | c (divisibility is transitive).

Proof: How do you prove this? Use the definition!

• E.g., if a | b and a | c, then, for some d1 and d2,

b = ad1 and c = ad2.

• That means b + c = a(d1 + d2)

• So a | (b + c).

Other parts: homework.

Corollary 1: If a | b and a | c, then a | (mb + nc) for
any integers m and n.

3

The division algorithm

Theorem 2: For a ∈ Z and d ∈ N , d > 0, there exist
unique q, r ∈ Z such that a = q · d + r and 0 ≤ r < d.

• r is the remainder when a is divided by d

Notation: r ≡ a (mod d); a mod d = r

Examples:

• Dividing 101 by 11 gives a quotient of 9 and a remain-
der of 2 (101 ≡ 2 (mod 11); 101 mod 11 = 2).

• Dividing 18 by 6 gives a quotient of 3 and a remainder
of 0 (18 ≡ 0 (mod 6); 18 mod 6 = 0).

Proof: Let q = ba/dc and define r = a− q · d.

• So a = q · d + r with q ∈ Z and 0 ≤ r < d (since
q · d ≤ a).

But why are q and d unique?

• Suppose q · d + r = q′ · d + r′ with q′, r′ ∈ Z and
0 ≤ r′ < d.

• Then (q′ − q)d = (r − r′) with −d < r − r′ < d.

• The lhs is divisible by d so r = r′ and we’re done.

4

Primes

• If p ∈ N , p > 1 is prime if its only positive factors
are 1 and p.

• n ∈ N is composite if n > 1 and n is not prime.

◦ If n is composite then a | n for some a ∈ N with
1 < a < n

◦ Can assume that a ≤
√

n.

∗ Proof: By contradiction:
Suppose n = bc, b >

√
n, c >

√
n. But then

bc > n, a contradiction.

Primes: 2, 3, 5, 7, 11, 13, . . .
Composites: 4, 6, 8, 9, . . .

5

Primality testing

How can we tell if n ∈ N is prime?

The naive approach: check if k | n for every 1 < k < n.

• But at least 10m−1 numbers are ≤ n, if n has m digits

◦ 1000 numbers less than 1000 (a 4-digit number)

◦ 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is exponential time!

We can do a little better

• Skip the even numbers

• That saves a factor of 2 −→ not good enough

• Try only primes (Sieve of Eratosthenes)

◦ Still doesn’t help much

We can do much better:

• There is a polynomial time randomized algorithm

◦We will discuss this when we talk about probability

• In 2002, Agarwal, Saxena, and Kayal gave a (non-
probabilistic) polynomial time algorithm

◦ Saxena and Kayal were undergrads in 2002!

6

The Fundamental Theorem of
Arithmetic

Theorem 3: Every natural number n > 1 can be
uniquely represented as a product of primes, written in
nondecreasing size.

• Examples: 54 = 2 · 33, 100 = 22 · 52, 15 = 3 · 5.

Proving that that n can be written as a product of primes
is easy (by strong induction):

• Base case: 2 is the product of primes (just 2)

• Inductive step: If n > 2 is prime, we are done. If not,
n = ab.

◦ Must have a < n, b < n.

◦ By I.H., both a and b can be written as a product
of primes

◦ So n is product of primes

Proving uniqueness is harder.

•We’ll do that in a few days . . .

7

An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n,
then a is prime.

Proof: By contradiction. (Left to the reader.)

• A multiset is like a set, except repetitions are allowed

◦ {{2, 2, 3, 3, 5}} is a multiset, not a set

PF(n): A prime factorization procedure

Input: n ∈ N+

Output: PFS - a multiset of n’s prime factors
PFS := ∅
for a = 2 to b

√
nc do

if a | n then PFS := PF(n/a) ∪{{a}} return PFS
if PFS = ∅ then PFS := {{n}} [n is prime]

Example: PF(7007) = {{7}}∪ PF(1001)
= {{7, 7}}∪ PF(143)
= {{7, 7, 11}}∪ PF(13)
= {{7, 7, 11, 13}}.

8

The Complexity of Factoring

Algorithm PF runs in exponential time:

•We’re checking every number up to
√

n

Can we do better?

•We don’t know.

• Modern-day cryptography implicitly depends on the
fact that we can’t!

9

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes.

Proof: By contradiction.

• Suppose that there are only finitely many primes:
p1, . . . , pn.

• Consider q = p1 × · · · × pn + 1

• Clearly q > p1, ..., pn, so it can’t be prime.

• So q must have a prime factor, which must be one of
p1, . . . , pn (since these are the only primes).

• Suppose it is pi.

◦ Then pi | q and pi | p1 × · · · × pn

◦ So pi | (q− p1× · · ·× pn); i.e., pi | 1 (Corollary 1)

◦ Contradiction!

Largest currently-known prime (as of 5/04):

• 224036583 − 1: 7235733 digits

• Check www.utm.edu/research/primes

Primes of the form 2p − 1 where p is prime are called
Mersenne primes.

• Search for large primes focuses on Mersenne primes

10

The distribution of primes

There are quite a few primes out there:

• Roughly one in every log(n) numbers is prime

Formally: let π(n) be the number of primes ≤ n:

Prime Number Theorem: π(n) ∼ n/ log(n); that
is,

lim
n→∞ π(n)/(n/ log(n)) = 1

Why is this important?

• Cryptosystems like RSA use a secret key that is the
product of two large (100-digit) primes.

• How do you find two large primes?

◦ Roughly one of every 100 100-digit numbers is prime

◦ To find a 100-digit prime;

∗ Keep choosing odd numbers at random

∗ Check if they are prime (using fast randomized
primality test)

∗ Keep trying until you find one

∗ Roughly 100 attempts should do it

11

(Some) Open Problems Involving
Primes

• Are there infinitely many Mersenne primes?

• Goldbach’s Conjecture: every even number greater
than 2 is the sum of two primes.

◦ E.g., 6 = 3 + 3, 20 = 17 + 3, 28 = 17 + 11

◦ This has been checked out to 6× 1016 (as of 2003)

◦ Every sufficiently large integer (> 1043,000!) is the
sum of four primes

• Two prime numbers that differ by two are twin primes

◦ E.g.: (3,5), (5,7), (11,13), (17,19), (41,43)

◦ also 4, 648, 619, 711, 505× 260,000 ± 1!

Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one
has proved them.

12

Greatest Common Divisor (gcd)

Definition: For a ∈ Z let D(a) = {k ∈ N : k | a}
• D(a) = {divisors of a}.

Claim. |D(a)| <∞ if (and only if) a 6= 0.

Proof: If a 6= 0 and k | a, then 0 < k < a.

Definition: For a, b ∈ Z, CD(a, b) = D(a) ∩ D(b) is
the set of common divisors of a, b.

Definition: The greatest common divisor of a and b
is

gcd(a, b) = max(CD(a, b)).

Examples:

• gcd(6, 9) = 3

• gcd(13, 100) = 1

• gcd(6, 45) = 3

Def. a and b are relatively prime if gcd(a, b) = 1.

• Example: 4 and 9 are relatively prime.

• Two numbers are relatively prime iff they have no
common prime factors.

Efficient computation of gcd(a, b) lies at the heart of com-
mercial cryptography.

13

Least Common Multiple (lcm)

Definition: The least common multiple of a, b ∈ N+,
lcm(a, b), is the smallest n ∈ N+ such that a | n and
b | n.

• Examples: lcm(4, 9) = 36, lcm(4, 10) = 20.

14

Computing the GCD

There is a method for calculating the gcd that goes back
to Euclid:

• Recall: if n > m and q divides both n and m, then
q divides n−m and n + m.

Therefore gcd(n, m) = gcd(m, n−m).

• Proof: Show that CD(n, m) = CD(m, n −m); i.e.
show that q divides both n and m iff q divides both
m and n−m. (If q divides n and m, then q divides
n − m by the argument above. If q divides m and
n−m, then q divides m + (n−m) = n.)

• This allows us to reduce the gcd computation to a
simpler case.

We can do even better:

• gcd(n, m) = gcd(m, n−m) = gcd(m, n− 2m) = . . .

• keep going as long as n− qm ≥ 0 — bn/mc steps

Consider gcd(6, 45):

• b45/6c = 7; remainder is 3 (45 ≡ 3 (mod 6))

• gcd(6, 45) = gcd(6, 45− 7× 6) = gcd(6, 3) = 3

15

We can keep this up this procedure to compute gcd(n1, n2):

• If n1 ≥ n2, write n1 as q1n2 + r1, where 0 ≤ r1 < n2

◦ q1 = bn1/n2c
• gcd(n1, n2) = gcd(r1, n2)

• Now r1 < n2, so switch their roles:

• n2 = q2r1 + r2, where 0 ≤ r2 < r1

• gcd(r1, n2) = gcd(r1, r2)

• Notice that max(n1, n2) > max(r1, n2) > max(r1, r2)

• Keep going until we have a remainder of 0 (i.e., some-
thing of the form gcd(rk, 0) or (gcd(0, rk))

◦ This is bound to happen sooner or later

16

Euclid’s Algorithm

Input m, n [m, n natural numbers, m ≥ n]
num← m; denom← n [Initialize num and denom]
repeat until denom = 0

q← bnum/denomc
rem← num− (q ∗ denom) [num mod denom = rem]
num← denom [New num]
denom← rem [New denom; note num ≥ denom]

endrepeat
Output num [num = gcd(m, n)]

Example: gcd(84, 33)

Iteration 1: num = 84, denom = 33, q = 2, rem = 18
Iteration 2: num = 33, denom = 18, q = 1, rem = 15
Iteration 3: num = 18, denom = 15, q = 1, rem = 3
Iteration 4: num = 15, denom = 3, q = 5, rem = 0
Iteration 5: num = 3, denom = 0 ⇒ gcd(84, 33) = 3

17

Euclid’s Algorithm: Correctness

How do we know this works?

•We need to prove that

(a) the algorithm terminates and

(b) that it correctly computes the gcd

We prove (a) and (b) simultaneously by finding appropri-
ate loop invariants and using induction:

• Notation: Let numk and denomk be the values of
num and denom at the beginning of the kth iteration.

P (k) has three parts:

(1) 0 < numk+1 + denomk+1 < numk + denomk

(2) 0 ≤ denomk ≤ numk.

(3) gcd(numk, denomk) = gcd(m, n)

• Termination follows from parts (1) and (2): if
numk +denomk decreases and 0 ≤ denomk ≤ numk,
then eventually denomk must hit 0.

• Correctness follows from part (3).

• The induction step is proved by looking at the details
of the loop.

18

Euclid’s Algorithm: Complexity

Input m, n [m, n natural numbers, m ≥ n]
num← m; denom← n [Initialize num and denom]
repeat until denom = 0

q← bnum/denomc
rem← num− (q ∗ denom)
num← denom [New num]
denom← rem [New denom; note num ≥ denom]

endrepeat
Output num [num = gcd(m, n)]

How many times do we go through the loop in the Eu-
clidean algorithm:

• Best case: Easy. Never!

• Average case: Too hard

•Worst case: Can’t answer this exactly, but we can get
a good upper bound.

◦ See how fast denom goes down in each iteration.

19

Claim: After two iterations, denom is halved:

• Recall num = q ∗ denom + rem. Use denom′ and
denom′′ to denote value of denom after 1 and 2 iter-
ations. Two cases:

1. rem ≤ denom/2 ⇒ denom′ ≤ denom/2 and
denom′′ < denom/2.

2. rem > denom/2. But then num′ = denom,
denom′ = rem. At next iteration, q = 1, and
denom′′ = rem′ = num′ − denom′ < denom/2

• How long until denom is ≤ 1?

◦ < 2 log2(m) steps!

• After at most 2 log2(m) steps, denom = 0.

20

The Extended Euclidean Algorithm

Theorem 5: For a, b ∈ N , not both 0, we can compute
s, t ∈ Z such that

gcd(a, b) = sa + tb.

• Example: gcd(9, 4) = 1 = 1 · 9 + (−2) · 4.

Proof: By strong induction on max(a, b). Suppose with-
out loss of generality a ≤ b.

• If max(a, b) = 1, then must have b = 1, gcd(a, b) = 1

◦ gcd(a, b) = 0 · a + 1 · b.
• If max(a, b) > 1, there are three cases:

◦ a = 0; then gcd(0, b) = b = 0 · a + 1 · b
◦ a = b; then gcd(a, b) = a = 1 · a + 0 · b
◦ If 0 < a < b, then gcd(a, b) = gcd(a, b − a).

Moreover, max(a, b) > max(a, b − a). Thus, by
IH, we can compute s, t such that

gcd(a, b) = gcd(a, b−a) = sa+t(b−a) = (s−t)a+tb.

Note: this computation basically follows the “recipe” of
Euclid’s algorithm.

21

Example of Extended Euclidean
Algorithm

Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) =
gcd(15, 3) = gcd(3, 0) = 3

We work backwards to write 3 as a linear combination of
84 and 33:

3 = 18− 15
[Now 3 is a linear combination of 18 and 15]

= 18− (33− 18)
= 2(18)− 33

[Now 3 is a linear combination of 18 and 33]
= 2(84− 2× 33))− 33
= 2× 84− 5× 33

[Now 3 is a linear combination of 84 and 33]

22

Some Consequences

Corollary 2: If a and b are relatively prime, then there
exist s and t such that as + bt = 1.

Corollary 3: If gcd(a, b) = 1 and a | bc, then a | c.
Proof:

• Exist s, t ∈ Z such that sa + tb = 1

• Multiply both sides by c: sac + tbc = c

• Since a | bc, a | sac + tbc, so a | c
Corollary 4: If p is prime and p | Πn

i=1 ai, then p | ai

for some 1 ≤ i ≤ n.

Proof: By induction on n:

• If n = 1: trivial.

Suppose the result holds for n and p | Πn+1
i=1 ai.

• note that p | Πn+1
i=1 ai = (Πn

i=1 ai)an+1.

• If p | an+1 we are done.

• If not, gcd(p, an+1) = 1.

• By Corollary 3, p | Πn
i=1 ai

• By the IH, p | ai for some 1 ≤ i ≤ n.

23

The Fundamental Theorem of
Arithmetic, II

Theorem 3: Every n > 1 can be represented uniquely
as a product of primes, written in nondecreasing size.

Proof: Still need to prove uniqueness. We do it by strong
induction.

• Base case: Obvious if n = 2.

Inductive step. Suppose OK for n′ < n.

• Suppose that n = Πs
i=1 pi = Πr

j=1 qj.

• p1 | Πr
j=1 qj, so by Corollary 4, p1 | qj for some j.

• But then p1 = qj, since both p1 and qj are prime.

• But then n/p1 = p2 · · · ps = q1 · · · qj−1qj+1 · · · qr

• Result now follows from I.H.

24

