Questions/Complaints About Homework?

Here's the procedure for homework questions/complaints:

- 1. Read the solutions first.
- 2. Talk to the person who graded it (check initials)
- 3. If (1) and (2) don't work, talk to me.

Further comments:

- There's no statute of limitations on grade changes
 - although asking questions right away is a good strategy
- Remember that 10/12 homeworks count. Each one is roughly worth 50 points, and homework is 35% of your final grade.

 \circ 16 homework points = 1% on your final grade

- Remember we're grading about 100 homeworks and graders are not expected to be mind readers. It's **your** problem to write clearly.
- Don't forget to staple your homework pages together, add the cover sheet, and put your name on clearly.

 \circ I'll deduct 2 points if that's not the case

Algorithmic number theory

Number theory used to be viewed as the purest branch of pure mathematics.

- Now it's the basis for most modern cryptography.
- Absolutely critical for e-commerce

• How do you know your credit card number is safe? Goal:

• To give you a basic understanding of the mathematics behind the RSA cryptosystem

 \circ Need to understand how prime numbers work

Division

For $a, b \in Z$, $a \neq 0$, a divides b if there is some $c \in Z$ such that b = ac.

- Notation: $a \mid b$
- Examples: $3 \mid 9, 3 \not| 7$

If $a \mid b$, then a is a *factor* of b, b is a *multiple* of a.

Theorem 1: If $a, b, c \in \mathbb{Z}$, then

- 1. if $a \mid b$ and $a \mid c$ then $a \mid (b+c)$.
- 2. If $a \mid b$ then $a \mid (bc)$
- 3. If $a \mid b$ and $b \mid c$ then $a \mid c$ (divisibility is transitive).

Proof: How do you prove this? Use the definition!

• E.g., if $a \mid b$ and $a \mid c$, then, for some d_1 and d_2 ,

 $b = ad_1$ and $c = ad_2$.

- That means $b + c = a(d_1 + d_2)$
- So $a \mid (b+c)$.

Other parts: homework.

Corollary 1: If $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ for any integers m and n.

The division algorithm

Theorem 2: For $a \in Z$ and $d \in N$, d > 0, there exist unique $q, r \in Z$ such that $a = q \cdot d + r$ and $0 \le r < d$.

• r is the remainder when a is divided by d

Notation: $r \equiv a \pmod{d}$; $a \mod d = r$

Examples:

- Dividing 101 by 11 gives a quotient of 9 and a remainder of 2 ($101 \equiv 2 \pmod{11}$; 101 mod 11 = 2).
- Dividing 18 by 6 gives a quotient of 3 and a remainder of 0 ($18 \equiv 0 \pmod{6}$; 18 mod 6 = 0).

Proof: Let $q = \lfloor a/d \rfloor$ and define $r = a - q \cdot d$.

• So $a = q \cdot d + r$ with $q \in Z$ and $0 \le r < d$ (since $q \cdot d \le a$).

But why are q and d unique?

- Suppose $q \cdot d + r = q' \cdot d + r'$ with $q', r' \in Z$ and $0 \le r' < d$.
- Then (q' q)d = (r r') with -d < r r' < d.
- The lhs is divisible by d so r = r' and we're done.

Primes

- If $p \in N$, p > 1 is *prime* if its only positive factors are 1 and p.
- $n \in N$ is *composite* if n > 1 and n is not prime.
 - If n is composite then $a \mid n$ for some $a \in N$ with 1 < a < n
 - Can assume that $a \leq \sqrt{n}$.
 - * **Proof:** By contradiction: Suppose n = bc, $b > \sqrt{n}$, $c > \sqrt{n}$. But then bc > n, a contradiction.

Primes: $2, 3, 5, 7, 11, 13, \ldots$ Composites: $4, 6, 8, 9, \ldots$

Primality testing

How can we tell if $n \in N$ is prime?

The naive approach: check if $k \mid n$ for every 1 < k < n.

• But at least 10^{m-1} numbers are $\leq n$, if n has m digits

• 1000 numbers less than 1000 (a 4-digit number)

• 1,000,000 less than 1,000,000 (a 7-digit number)

So the algorithm is *exponential time*!

We can do a little better

- Skip the even numbers
- That saves a factor of $2 \longrightarrow \text{not good enough}$
- Try only primes (Sieve of Eratosthenes)

• Still doesn't help much

We can do much better:

- There is a polynomial time *randomized* algorithm
 We will discuss this when we talk about probability
- In 2002, Agarwal, Saxena, and Kayal gave a (non-probabilistic) polynomial time algorithm

• Saxena and Kayal were undergrads in 2002!

The Fundamental Theorem of Arithmetic

Theorem 3: Every natural number n > 1 can be uniquely represented as a product of primes, written in nondecreasing size.

• Examples: $54 = 2 \cdot 3^3$, $100 = 2^2 \cdot 5^2$, $15 = 3 \cdot 5$.

Proving that that n can be written as a product of primes is easy (by strong induction):

- Base case: 2 is the product of primes (just 2)
- Inductive step: If n > 2 is prime, we are done. If not, n = ab.
 - Must have a < n, b < n.
 - \circ By I.H., both *a* and *b* can be written as a product of primes
 - \circ So *n* is product of primes

Proving uniqueness is harder.

• We'll do that in a few days ...

An Algorithm for Prime Factorization

Fact: If a is the smallest number > 1 that divides n, then a is prime.

Proof: By contradiction. (Left to the reader.)

A multiset is like a set, except repetitions are allowed
{{2,2,3,3,5}} is a multiset, not a set

Input: $n \in N^+$ **Output:** PFS - a multiset of *n*'s prime factors PFS := \emptyset **for** a = 2 to $\lfloor \sqrt{n} \rfloor$ do **if** $a \mid n$ **then** PFS := PF $(n/a) \cup \{\{a\}\}$ **return** PFS **if** PFS = \emptyset **then** PFS := $\{\{n\}\}$ [*n* is prime]

Example:
$$PF(7007) = \{\{7\}\} \cup PF(1001)$$

= $\{\{7,7\}\} \cup PF(143)$
= $\{\{7,7,11\}\} \cup PF(13)$
= $\{\{7,7,11,13\}\}.$

The Complexity of Factoring

Algorithm PF runs in exponential time:

• We're checking every number up to \sqrt{n}

Can we do better?

- We don't know.
- Modern-day cryptography implicitly depends on the fact that we can't!

How Many Primes Are There?

Theorem 4: [Euclid] There are infinitely many primes. **Proof:** By contradiction.

- Suppose that there are only finitely many primes: p_1, \ldots, p_n .
- Consider $q = p_1 \times \cdots \times p_n + 1$
- Clearly $q > p_1, ..., p_n$, so it can't be prime.
- So q must have a prime factor, which must be one of p_1, \ldots, p_n (since these are the only primes).
- Suppose it is p_i .
 - Then $p_i \mid q$ and $p_i \mid p_1 \times \cdots \times p_n$
 - So $p_i \mid (q p_1 \times \cdots \times p_n)$; i.e., $p_i \mid 1$ (Corollary 1)
 - Contradiction!

Largest currently-known prime (as of 5/04):

- $2^{24036583} 1$: 7235733 digits
- Check www.utm.edu/research/primes

Primes of the form $2^p - 1$ where p is prime are called *Mersenne primes*.

• Search for large primes focuses on Mersenne primes

The distribution of primes

There are quite a few primes out there:

• Roughly one in every $\log(n)$ numbers is prime

Formally: let $\pi(n)$ be the number of primes $\leq n$:

Prime Number Theorem: $\pi(n) \sim n/\log(n)$; that is,

 $\lim_{n\to\infty} \pi(n)/(n/\log(n)) = 1$

Why is this important?

- Cryptosystems like RSA use a secret key that is the product of two large (100-digit) primes.
- How do you find two large primes?
 - Roughly one of every 100 100-digit numbers is prime
 - To find a 100-digit prime;
 - * Keep choosing odd numbers at random
 - * Check if they are prime (using fast randomized primality test)
 - * Keep trying until you find one
 - * Roughly 100 attempts should do it

(Some) Open Problems Involving Primes

- Are there infinitely many Mersenne primes?
- Goldbach's Conjecture: every even number greater than 2 is the sum of two primes.
 - \circ E.g., 6 = 3 + 3, 20 = 17 + 3, 28 = 17 + 11
 - \circ This has been checked out to 6×10^{16} (as of 2003)
 - \circ Every sufficiently large integer (> $10^{43,000}!)$ is the sum of four primes

• Two prime numbers that differ by two are *twin primes*

• E.g.: (3,5), (5,7), (11,13), (17,19), (41,43)

• also 4, 648, 619, 711, 505 × $2^{60,000} \pm 1!$

Are there infinitely many twin primes?

All these conjectures are believed to be true, but no one has proved them.

Greatest Common Divisor (gcd)

Definition: For $a \in Z$ let $D(a) = \{k \in N : k \mid a\}$

• $D(a) = \{ \text{divisors of } a \}.$

Claim. $|D(a)| < \infty$ if (and only if) $a \neq 0$.

Proof: If $a \neq 0$ and $k \mid a$, then 0 < k < a.

Definition: For $a, b \in Z$, $CD(a, b) = D(a) \cap D(b)$ is the set of common divisors of a, b.

Definition: The greatest common divisor of a and b is

$$gcd(a, b) = max(CD(a, b)).$$

Examples:

- gcd(6,9) = 3
- gcd(13, 100) = 1
- gcd(6, 45) = 3

Def. a and b are relatively prime if gcd(a, b) = 1.

- Example: 4 and 9 are relatively prime.
- Two numbers are relatively prime iff they have no common prime factors.

Efficient computation of gcd(a, b) lies at the heart of commercial cryptography.

Least Common Multiple (lcm)

Definition: The *least common multiple* of $a, b \in N^+$, lcm(a, b), is the smallest $n \in N^+$ such that $a \mid n$ and $b \mid n$.

• Examples: lcm(4, 9) = 36, lcm(4, 10) = 20.

Computing the GCD

There is a method for calculating the gcd that goes back to Euclid:

• **Recall:** if n > m and q divides both n and m, then q divides n - m and n + m.

Therefore gcd(n, m) = gcd(m, n - m).

- Proof: Show that CD(n,m) = CD(m,n-m); i.e. show that q divides both n and m iff q divides both m and n-m. (If q divides n and m, then q divides n-m by the argument above. If q divides m and n-m, then q divides m + (n-m) = n.)
- This allows us to reduce the gcd computation to a simpler case.

We can do even better:

- $gcd(n,m) = gcd(m,n-m) = gcd(m,n-2m) = \dots$
- keep going as long as $n qm \ge 0 \lfloor n/m \rfloor$ steps Consider gcd(6, 45):
 - $\lfloor 45/6 \rfloor = 7$; remainder is 3 ($45 \equiv 3 \pmod{6}$)
 - $gcd(6, 45) = gcd(6, 45 7 \times 6) = gcd(6, 3) = 3$

We can keep this up this procedure to compute $gcd(n_1, n_2)$:

- If $n_1 \ge n_2$, write n_1 as $q_1n_2 + r_1$, where $0 \le r_1 < n_2$ $\circ q_1 = \lfloor n_1/n_2 \rfloor$
- $gcd(n_1, n_2) = gcd(r_1, n_2)$
- Now $r_1 < n_2$, so switch their roles:
- $n_2 = q_2 r_1 + r_2$, where $0 \le r_2 < r_1$
- $gcd(r_1, n_2) = gcd(r_1, r_2)$
- Notice that $\max(n_1, n_2) > \max(r_1, n_2) > \max(r_1, r_2)$
- Keep going until we have a remainder of 0 (i.e., something of the form $gcd(r_k, 0)$ or $(gcd(0, r_k))$

• This is bound to happen sooner or later

Euclid's Algorithm

Input m, n $[m, n \text{ natural numbers}, m \geq n]$ $num \leftarrow m; denom \leftarrow n$ [Initialize num and denom]repeat until denom = 0 $q \leftarrow \lfloor num/denom \rfloor$ $q \leftarrow \lfloor num/denom \rfloor$ $rem \leftarrow num - (q * denom) [num mod denom = rem]$ $num \leftarrow denom$ [New num] $denom \leftarrow rem$ [New denom; note $num \geq denom$]endrepeatOutput num [num = gcd(m, n)]

Example: gcd(84, 33)

Iteration 1: num = 84, denom = 33, q = 2, rem = 18Iteration 2: num = 33, denom = 18, q = 1, rem = 15Iteration 3: num = 18, denom = 15, q = 1, rem = 3Iteration 4: num = 15, denom = 3, q = 5, rem = 0Iteration 5: num = 3, $denom = 0 \Rightarrow \gcd(84, 33) = 3$

Euclid's Algorithm: Correctness

How do we know this works?

- We need to prove that
 - (a) the algorithm terminates and
 - (b) that it correctly computes the gcd

We prove (a) and (b) simultaneously by finding appropriate loop invariants and using induction:

• Notation: Let num_k and $denom_k$ be the values of num and denom at the beginning of the kth iteration.

P(k) has three parts:

- $(1) 0 < num_{k+1} + denom_{k+1} < num_k + denom_k$
- (2) $0 \leq denom_k \leq num_k$.
- (3) $gcd(num_k, denom_k) = gcd(m, n)$
 - Termination follows from parts (1) and (2): if $num_k + denom_k$ decreases and $0 \leq denom_k \leq num_k$, then eventually $denom_k$ must hit 0.
 - Correctness follows from part (3).
 - The induction step is proved by looking at the details of the loop.

Euclid's Algorithm: Complexity

Input m, n $[m, n \text{ natural numbers}, m \geq n]$ $num \leftarrow m; denom \leftarrow n$ [Initialize num and denom]repeat until denom = 0 $q \leftarrow \lfloor num/denom \rfloor$ $q \leftarrow \lfloor num/denom \rfloor$ $rem \leftarrow num - (q * denom)$ $num \leftarrow denom$ [New num] $denom \leftarrow rem$ [New denom; note num \geq denom]endrepeatOutput num [num = gcd(m, n)]

How many times do we go through the loop in the Euclidean algorithm:

- Best case: Easy. Never!
- Average case: Too hard
- Worst case: Can't answer this exactly, but we can get a good upper bound.

• See how fast *denom* goes down in each iteration.

Claim: After two iterations, *denom* is halved:

- Recall num = q * denom + rem. Use denom' and denom'' to denote value of denom after 1 and 2 iterations. Two cases:
 - 1. $rem \leq denom/2 \Rightarrow denom' \leq denom/2$ and denom'' < denom/2.
 - 2. rem > denom/2. But then num' = denom, denom' = rem. At next iteration, q = 1, and denom'' = rem' = num' - denom' < denom/2
- How long until denom is ≤ 1 ?

 $\circ < 2\log_2(m)$ steps!

• After at most $2\log_2(m)$ steps, denom = 0.

The Extended Euclidean Algorithm

Theorem 5: For $a, b \in N$, not both 0, we can compute $s, t \in Z$ such that

$$gcd(a,b) = sa + tb.$$

• Example: $gcd(9,4) = 1 = 1 \cdot 9 + (-2) \cdot 4$.

Proof: By strong induction on $\max(a, b)$. Suppose without loss of generality $a \leq b$.

- If max(a, b) = 1, then must have b = 1, gcd(a, b) = 1
 o gcd(a, b) = 0 ⋅ a + 1 ⋅ b.
- If $\max(a, b) > 1$, there are three cases:
 - a = 0; then $gcd(0, b) = b = 0 \cdot a + 1 \cdot b$
 - $\circ a = b$; then $gcd(a, b) = a = 1 \cdot a + 0 \cdot b$
 - If 0 < a < b, then gcd(a,b) = gcd(a,b-a). Moreover, max(a,b) > max(a,b-a). Thus, by IH, we can compute s, t such that

$$gcd(a,b) = gcd(a,b-a) = sa + t(b-a) = (s-t)a + tb.$$

Note: this computation basically follows the "recipe" of Euclid's algorithm.

Example of Extended Euclidean Algorithm

Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) = gcd(3, 0) = 3

We work backwards to write 3 as a linear combination of 84 and 33:

3 = 18 - 15[Now 3 is a linear combination of 18 and 15] = 18 - (33 - 18) = 2(18) - 33[Now 3 is a linear combination of 18 and 33] $= 2(84 - 2 \times 33)) - 33$ $= 2 \times 84 - 5 \times 33$ [Now 3 is a linear combination of 84 and 33]

Some Consequences

Corollary 2: If a and b are relatively prime, then there exist s and t such that as + bt = 1.

Corollary 3: If gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$. **Proof:**

- Exist $s, t \in Z$ such that sa + tb = 1
- Multiply both sides by c: sac + tbc = c
- Since $a \mid bc, a \mid sac + tbc$, so $a \mid c$

Corollary 4: If p is prime and $p \mid \prod_{i=1}^{n} a_i$, then $p \mid a_i$ for some $1 \leq i \leq n$.

Proof: By induction on *n*:

• If n = 1: trivial.

Suppose the result holds for n and $p \mid \prod_{i=1}^{n+1} a_i$.

- note that $p \mid \prod_{i=1}^{n+1} a_i = (\prod_{i=1}^n a_i)a_{n+1}$.
- If $p \mid a_{n+1}$ we are done.
- If not, $gcd(p, a_{n+1}) = 1$.
- By Corollary 3, $p \mid \prod_{i=1}^{n} a_i$
- By the IH, $p \mid a_i$ for some $1 \leq i \leq n$.

The Fundamental Theorem of Arithmetic, II

Theorem 3: Every n > 1 can be represented uniquely as a product of primes, written in nondecreasing size. **Proof:** Still need to prove uniqueness. We do it by strong induction.

• Base case: Obvious if n = 2.

Inductive step. Suppose OK for n' < n.

- Suppose that $n = \prod_{i=1}^{s} p_i = \prod_{j=1}^{r} q_j$.
- $p_1 \mid \prod_{j=1}^r q_j$, so by Corollary 4, $p_1 \mid q_j$ for some j.
- But then $p_1 = q_j$, since both p_1 and q_j are prime.
- But then $n/p_1 = p_2 \cdots p_s = q_1 \cdots q_{j-1} q_{j+1} \cdots q_r$
- Result now follows from I.H.