
Matrix Multiplication

Given two vectors ~a = [a1, . . . , ak] and ~b = [b1, . . . , bk],
their inner product (or dot product) is

~a ·~b =
k∑

i=1
aibi

• [1, 2, 3] · [−2, 4, 6] = (1×−2)+(2×4)+(3×6) = 24.

We can multiply an n×m matrix A = [aij] by an m× k
matrix B = [bij], to get an n× k matrix C = [cij]:

• cij = ∑m
r=1 airbrj

• this is the inner product of the ith row of A with the
jth column of B
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•
 2 3 1
5 7 4

 ×


3 7
4 2
−1 −2

 =

 17 18
39 41



17 = (2× 3) + (3× 4) + (1×−1)
= (2, 3, 1) · (3, 4,−1)

18 = (2× 7) + (3× 2) + (1×−2)
= (2, 3, 1) · (7, 2,−2)

39 = (5× 3) + (7× 4) + (4×−1)
= (5, 7, 4) · (3, 4,−1)

41 = (5× 7) + (7× 2) + (4×−2)
= (5, 7, 4) · (7, 2,−2)
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Why is multiplication defined in this strange way?

• Because it’s useful!

Suppose

z1 = 2y1 + 3y2 + y3 y1 = 3x1 + 7x2

z2 = 5y1 + 7y2 + 4y3 y2 = 4x1 + 2x2

y3 = −x1 − 2x2

Thus,

 z1

z2

 =

 2 3 1
5 7 4

·

y1

y2

y3

 and


y1

y2

y3

 =


3 7
4 2
−1 −2

 ·
 x1

x2

.

Suppose we want to express the z’s in terms of the x’s:

z1 = 2y1 + 3y2 + y3

= 2(3x1 + 7x2) + 3(4x1 + 2x2) + (−x1 − 2x2)
= (2× 3 + 3× 4 + (−1))x1 + (2× 7 + 3× 2 + (−2))x2

= 17x1 + 18x2

Similarly, z2 = 39x1 + 41x2.

 z1

z2

 =

 2 3 1
5 7 4

 ·


3 7
4 2
−1 −2

 ·
 x1

x2

.
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Algorithms

An algorithm is a recipe for solving a problem.

In the book, a particular language is used for describing
algorithms.

• You need to learn the language well enough to read
the examples

• You need to learn to express your solution to a prob-
lem algorithmically and unambiguously

• YOU DO NOT NEED TO LEARN IN DETAIL ALL
THE IDIOSYNCRACIES OF THE PARTICULAR
LANGUAGE USED IN THE BOOK.

◦ You will not be tested on it, nor will most of the
questions in homework use it

◦ I suggest you skim Chapter 1; I won’t cover it
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Methods of Proof

One way of proving things is by induction.

• That’s coming next.

What if you can’t use induction?

Typically you’re trying to prove a statement like “Given
X , prove (or show that) Y ”. This means you have to
prove

X ⇒ Y

In the proof, you’re allowed to assume X , and then show
that Y is true, using X .

• A special case: if there is no X , you just have to prove
Y or true ⇒ Y .

Alternatively, you can do a proof by contradiction: As-
sume that Y is false, and show that X is false.

• This amounts to proving

¬Y ⇒ ¬X
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Example

Theorem n is odd iff (in and only if) n2 is odd, for
n ∈ Z.

Proof: We have to show

1. n odd ⇒ n2 odd

2. n2 odd ⇒ n odd

For (1), if n is odd, it is of the form 2k + 1. Hence,

n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

Thus, n2 is odd.

For (2), we proceed by contradiction. Suppose n2 is odd
and n is even. Then n = 2k for some k, and n2 = 4k2.
Thus, n2 is even. This is a contradiction. Thus, n must
be odd.
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A Proof By Contradiction

Theorem:
√

2 is irrational.

Proof: By contradiction. Suppose
√

2 is rational. Then√
2 = a/b for some a, b ∈ N+. We can assume that a/b

is in lowest terms.

• Therefore, a and b can’t both be even.

Squaring both sides, we get

2 = a2/b2

Thus, a2 = 2b2, so a2 is even. This means that a must
be even.

Suppose a = 2c. Then a2 = 4c2.

Thus, 4c2 = 2b2, so b2 = 2c2. This means that b2 is even,
and hence so is b.

Contradiction!

Thus,
√

2 must be irrational.
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Induction

This is perhaps the most important technique we’ll learn
for proving things.

Idea: To prove that a statement is true for all natural
numbers, show that it is true for 1 (base case or basis
step) and show that if it is true for n, it is also true for
n + 1 (inductive step).

• The base case does not have to be 1; it could be 0, 2,
3, . . .

• If the base case is k, then you are proving the state-
ment for all n ≥ k.

It is sometimes quite difficult to formulate the statement
to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT
THE FORMULATION OF THE STATEMENT TO PROVE.
YOU MUST STATE IT VERY CLEARLY. I WILL ALSO
BE PICKY ABOUT THE FORM OF THE INDUC-
TIVE PROOF.
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Writing Up a Proof by Induction

1. State the hypothesis very clearly:

• Let P (n) be the (English) statement . . . [some state-
ment involving n]

2. The basis step

• P (k) holds because . . . [where k is the base case,
usually 0 or 1]

3. Inductive step

• Assume P (n). We prove P (n+1) holds as follows
. . . Thus, P (n) ⇒ P (n + 1).

4. Conclusion

• Thus, we have shown by induction that P (n) holds
for all n ≥ k (where k was what you used for your
basis step). [It’s not necessary to always write the
conclusion explicitly.]
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A Simple Example

Theorem: For all positive integers n,

n∑
k=1

k =
n(n + 1)

2
.

Proof: By induction. Let P (n) be the statement

n∑
k=1

k =
n(n + 1)

2
.

Basis: P (1) asserts that ∑1
k=1 k = 1(1+1)

2 . Since the LHS
and RHS are both 1, this is true.

Inductive step: Assume P (n). We prove P (n + 1).
Note that P (n + 1) is the statement

n+1∑
k=1

k =
(n + 1)(n + 2)

2
.

∑n+1
k=1 k = ∑n

k=1 k + (n + 1)

= n(n+1)
2 + (n + 1)[Induction hypothesis]

= n(n+1)+2(n+1)
2

= (n+1)(n+2)
2

Thus, P (n) implies P (n + 1), so the result is true by
induction.
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Notes:

• You can write
P (n)
= instead of writing “Induction hy-

pothesis” at the end of the line, or you can write
“P (n)” at the end of the line.

◦ Whatever you write, make sure it’s clear when
you’re applying the induction hypothesis

• Notice how we rewrite ∑n+1
k=1 k so as to be able to ap-

peal to the induction hypothesis. This is standard
operating procedure.
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Another example

Theorem: (1+x)n ≥ 1+nx for all nonnegative integers
n and all x ≥ −1. (Take 00 = 1.)

Proof: By induction on n. Let P (n) be the statement
(1 + x)n ≥ 1 + nx.

Basis: P (0) says (1 + x)0 ≥ 1. This is clearly true.

Inductive Step: Assume P (n). We prove P (n + 1).

(1 + x)n+1 = (1 + x)n(1 + x)
≥ (1 + nx)(1 + x)[Induction hypothesis]
= 1 + nx + x + nx2

= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x

• Why does this argument fail if x < −1?
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Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2,
moving one ring at a time, and never having a larger ring
on top of a smaller one.

How do we solve this?

• Think recursively!

• Suppose you could solve it for n−1 rings? How could
you do it for n?
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Solution

• Move top n − 1 rings from pole 1 to pole 3 (we can
do this by assumption)

◦ Pretend largest ring isn’t there at all

• Move largest ring from pole 1 to pole 2

• Move top n − 1 rings from pole 3 to pole 2 (we can
do this by assumption)

◦ Again, pretend largest ring isn’t there

This solution translates to a recursive algorithm:

• Suppose robot(r → s) is a command to a robot to
move the top ring on pole r to pole s

• Note that if r, s ∈ {1, 2, 3}, then 6−r−s is the other
number in the set

procedure H(n, r, s) [Move n disks from r to s]
if n = 1 then robot(r → s)

else H(n− 1, r, 6− r − s)
robot(r → s)
H(n− 1, 6− r − s, s)

endif
return

endpro
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Towers of Hanoi: Analysis

Theorem: It takes 2n− 1 moves to perform H(n, r, s),
for all positive n, and all r, s ∈ {1, 2, 3}.

Proof: Let P (n) be the statement “It takes 2n−1 moves
to perform H(n, r, s) and all r, s ∈ {1, 2, 3}.”
• Note that “for all positive n” is not part of P (n)!

• P (n) is a statement about a particular n.

• If it were part of P (n), what would P (1) be?

Basis: P (1) is immediate: robot(r → s) is the only move
in H(1, r, s), and 21 − 1 = 1.

Inductive step: Assume P (n). To perform H(n+1, r, s),
we first do H(n, r, 6 − r − s), then robot(r → s), then
H(n, 6 − r − s, s). Altogether, this takes 2n − 1 + 1 +
2n − 1 = 2n+1 − 1 steps.
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A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r
to pole s requires at least 2n − 1 steps.

Proof: By induction, taking the statement of the theo-
rem to be P (n).

Basis: Easy: Clearly it requires (at least) 1 step to move
1 ring from pole r to pole s.

Inductive step: Assume P (n). Suppose you have a se-
quence of steps to move n + 1 rings from r to s. There’s
a first time and a last time you move ring n + 1:

• Let k be the first time

• Let k′ be the last time.

• Possibly k = k′ (if you only move ring n + 1 once)

Suppose at step k, you move ring n + 1 from pole r to
pole s′.

• You can’t assume that s′ = s, although this is opti-
mal.
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Key point:

• The top n rings have to be on the third pole, 6−r−s′

• Otherwise, you couldn’t move ring n + 1 from r to s′.

By P (n), it took at least 2n − 1 moves to get the top n
rings to pole 6− r − s′.

At step k′, the last time you moved ring n + 1, suppose
you moved it from pole r′ to s (it has to end up at s).

• the other n rings must be on pole 6− r′ − s.

• By P (n), it takes at least 2n − 1 moves to get them
to ring s (where they have to end up).

So, altogether, there are at least 2(2n− 1) + 1 = 2n+1− 1
moves in your sequence:

• at least 2n − 1 moves before step k

• at least 2n − 1 moves after step k′

• step k itself.

If course, if k 6= k′ (that is, if you move ring n + 1 more
than once) there are even more moves in your sequence.
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Strong Induction

Sometimes when you’re proving P (n + 1), you want to
be able to use P (j) for j ≤ n, not just P (n). You can
do this with strong induction.

1. Let P (n) be the statement . . . [some statement involv-
ing n]

2. The basis step

• P (k) holds because . . . [where k is the base case,
usually 0 or 1]

3. Inductive step

• Assume P (k), . . . , P (n) holds. We show
P (n + 1) holds as follows . . .

Although strong induction looks stronger than induction,
it’s not. Anything you can do with strong induction,
you can also do with regular induction, by appropriately
modifying the induction hypothesis.

• If P (n) is the statement you’re trying to prove by
strong induction, let P ′(n) be the statement P (1), . . . , P (n)
hold. Proving P ′(n) by regular induction is the same
as proving P (n) by strong induction.
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An example using strong induction

Theorem: Any item costing n > 7 kopecks can be
bought using only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let P (n) be the state-
ment that n kopecks can be paid using 3-kopeck and 5-
kopeck coins, for n ≥ 8.

Basis: P (8) is clearly true since 8 = 3 + 5.

Inductive step: Assume P (8), . . . , P (n) is true. We
want to show P (n + 1). If n + 1 is 9 or 10, then it’s
easy to see that there’s no problem (P (9) is true since
9 = 3 + 3 + 3, and P (10) is true since 10 = 5 + 5).
Otherwise, note that (n + 1) − 3 = n − 2 ≥ 8. Thus,
P (n − 2) is true, using the induction hypothesis. This
means we can use 3- and 5-kopeck coins to pay for some-
thing costing n−2 kopecks. One more 3-kopeck coin pays
for something costing n + 1 kopecks.
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Bubble Sort

Suppose we wanted to sort n items. Here’s one way to
do it:

Input n [number of items to be sorted]
w1, . . . , wn [items]

Algorithm BubbleSort
for i = 1 to n− 1

for j = 1 to n− i
if wj > wj+1 then switch(wj, wj+1) endif

endfor
endfor

Why is this right:

• Intuitively, because largest elements “bubble up” to
the top

How many comparisons?

• Best case, worst case, average case all the same:

◦ (n− 1) + (n− 2) + · · · + 1 = n(n− 1)/2
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Proving Bubble Sort Correct

We want to show that the algorithm is correct by induc-
tion. What’s the statement of the induction?

Could take P (n) to be the statement: the algorithm
works correctly for n inputs.

• That turns out to be a tough induction statement to
work with.

• Suppose P (1) is true. How do you prove P (2)?

A better choice:

• P (k) is the statement that, if there are n inputs and
k ≤ n − 1, then after k iterations of the outer loop,
wn−k+1, . . . , wn are the k largest items, sorted in the
right order.

◦ Note that P (k) is vacuously true if k ≥ n.

Basis: How do we prove P (1)? By a nested induction!

This time, take Q(l) to be the statement that, if l ≤ n−1,
then after l iterations of the inner loop, wl+1 > wj, for
j = 1, . . . , l.

Basis: Q(1) holds because after the first iteration of the
inner loop, w2 > w1 (thanks to the switch statement).

21



Inductive step: Suppose that Q(l) is true. If l+1 ≥ n−1,
then Q(l + 1) is vacuously true. If l + 1 < n, by Q(l), we
know that wl+1 > wj, for j = 1, . . . , l after l iterations.
The (l + 1)st iteration of the inner loop compares wl+1

and wl+2. After the (l + 1)st iteration, the bigger one is
wl+2. Thus, wl+2 > wl+1. By the induction hypothesis,
wl+2 > wj, for j + 1, . . . , l.

That completes the nested induction. Thus, Q(l) holds
for all l. Q(n−1) says that wn > wj for j = 1, . . . , n−1.
That’s just what P (1) says. So we’re done with the base
case of the main induction.

[Note: For a really careful proof, we need better notation
(for value of wl before and after the switch).]

Inductive step (for main induction): Assume P (k).
Thus, wk+1, . . . , wn are the k largest items. To prove
P (k + 1), we use nested induction again:

• Now Q(l) says “if i = k + 1, then if l ≤ n− (k + 1),
after l iterations of the inner loop, wl+1 > wj, for
j = 1, . . . , l.”

• Almost the same as before, except that instead of say-
ing “if l ≤ n− 1”, we say “if l ≤ n− (k + 1).”

◦ If i = k + 1, we go through the inner loop only
n− (k + 1) times.
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Q(n−k−1) says that, after the (k+1)st iteration of the
inner loop, wn−k > wj for j = 1, . . . , k. P (k) says that
the top k elements are wn−k+1, . . . , wn, in that order.
Thus, the top k + 1 elements must be wn−k, . . . wn, in
that order. This proves P (k + 1).

Note that P (n− 1) says that after n− 1 iterations of the
outer loop (which is all there are), the top n− 1 elements
are w2, . . . , wn. So w1 has to be the smallest element,
and w1, w2, . . . , wn is a sorted list.
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