Matrix Multiplication

Given two vectors @ = [aq, ..., ax| and b = b1, ..., by,
their inner product (or dot product) is
-k
a-b= 'Zl Clibi
o [1,2,3]-[=2,4,6] = (1% —2) +(2x 4) + (3% 6) = 24.
We can multiply an n x m matrix A = |a;;] by an m x k
matrix B = [b;;], to get an n x k matrix C' = |¢;;]:
® ¢jj =% ajyby;

e this is the inner product of the 7th row of A with the
7th column of B



17 18
x| 4 2 | =
oo {3941]
17 =(2x3)+(3x4)+ (1 x—1)
= (2,3,1)- (3,4, —1)
18 =2x7)+(3x2)+(1x-2)
= (2,3,1)- (7,2, -2)
39 =(5x3)+(Tx4)+ (4 x—1)
= (5,7,4)- (3,4, —1)
41 =B xT)+(7Tx2)+ (4 x =2)
= (5,7,4)-(7,2,-2)



Why is multiplication defined in this strange way?

e Because it’s useful!

Suppose
21 =21 +3Y2 +y3 Y1 =311+ 719
29 = 01 + (Yo + 4ys yo = 41 + 229
Y3 = —x1 — 2T
U1 U1 3 7
1] 1231 B T
Thus, v —{574] Yo land |y | =] 4 2 2o |
Y3 Y3 —1 =2

Suppose we want to express the z’s in terms of the x’s:

z1 =2y1+3y2 + y3
= 2(3x1 + Txo) + 3(4x1 + 229) + (—x1 — 229)
= (2x34+3x44+ (1)1 +(2XxT+3 X2+ (=2))xs

— 1733'1 + 181’2
Similarly, zo = 39z 4+ 41x5.
21| 231 . i ; X1
2| |5 74 To |

—1 =2



Algorithms

An algorithm is a recipe for solving a problem.

In the book, a particular language is used for describing
algorithms.

e You need to learn the language well enough to read
the examples

e You need to learn to express your solution to a prob-
lem algorithmically and unambiguously

e YOU DO NOT NEED TO LEARN IN DETAIL ALL
THE IDIOSYNCRACIES OF THE PARTICULAR
LANGUAGE USED IN THE BOOK.

o You will not be tested on it, nor will most of the
questions in homework use it

o [ suggest you skim Chapter 1; I won't cover it



Methods of Proof

One way of proving things is by induction.
e That’s coming next.

What if you can’t use induction?

Typically you're trying to prove a statement like “Given
X, prove (or show that) Y”. This means you have to
prove

X =Y

In the proof, you're allowed to assume X, and then show
that Y is true, using X.

e A special case: if there is no X, you just have to prove
Y or true =Y.

Alternatively, you can do a proof by contradiction: As-
sume that Y is false, and show that X is false.

e This amounts to proving

—Y = X



Example

Theorem n is odd iff (in and only if) n* is odd, for
ne .

Proof: We have to show
1. n odd = n* odd
2. n? odd = n odd
For (1), if n is odd, it is of the form 2k + 1. Hence,
n® =4k + 4k + 1 = 2(2k* + 2k) + 1
Thus, n? is odd.

For (2), we proceed by contradiction. Suppose n* is odd
and n is even. Then n = 2k for some k, and n® = 4k?.

Thus, n° is even. This is a contradiction. Thus, 7 must
be odd.



A Proof By Contradiction

Theorem: /2 is irrational.

Proof: By contradiction. Suppose v/2 is rational. Then
V2 = a/b for some a,b € N*. We can assume that a/b
is in lowest terms.

e Therefore, a and b can’t both be even.
Squaring both sides, we get
2 = a’ /b

Thus, a® = 2b%, so a® is even. This means that a must
be even.

Suppose @ = 2¢. Then a® = 4¢.

Thus, 4¢? = 2b°, so b*> = 2¢*. This means that b° is even,
and hence so is b.

Contradiction!

Thus, /2 must be irrational.



Induction

This is perhaps the most important technique we'll learn
for proving things.

Idea: To prove that a statement is true for all natural
numbers, show that it is true for 1 (base case or basis
step) and show that if it is true for n, it is also true for
n + 1 (inductive step).

e The base case does not have to be 1: it could be 0, 2,
3, ...

e If the base case is k, then you are proving the state-
ment for all n > k.

It is sometimes quite difficult to formulate the statement
to prove.

IN THIS COURSE, I WILL BE VERY FUSSY ABOUT
THE FORMULATION OF THE STATEMENT TO PROVE.
YOU MUST STATE IT VERY CLEARLY. I WILL ALSO
BE PICKY ABOUT THE FORM OF THE INDUC-
TIVE PROOF.



Writing Up a Proof by Induction

1. State the hypothesis very clearly:

e Let P(n) be the (English) statement . . . [some state-
ment involving n|

2. The basis step

e P(k) holds because ... [where k is the base case,
usually 0 or 1]

3. Inductive step

e Assume P(n). We prove P(n+ 1) holds as follows
... Thus, P(n) = P(n+1).

4. Conclusion

e Thus, we have shown by induction that P(n) holds
for all n > k (where k was what you used for your
basis step). [It’s not necessary to always write the
conclusion explicitly.]



A Simple Example

Theorem: For all positive integers n,
% I n(n + 1>.
k=1 2

Proof: By induction. Let P(n) be the statement

k:n(nntl).
1 2

M3

k

Basis: P(1) asserts that ©p_; k = 1(12“). Since the LHS
and RHS are both 1, this is true.

Inductive step: Assume P(n). We prove P(n + 1).
Note that P(n + 1) is the statement

nil 1 (n+1)(n+2)

k=1 2

itk =sf_ k+(n+1)

— ”(”;1) + (n + 1)[Induction hypothesis]

_ n(n+1)4+2(n+1)

2
_ (n+1)(n+2)
2

Thus, P(n) implies P(n + 1), so the result is true by
induction.

10



Notes:
P(n)

e You can write =" instead of writing “Induction hy-
pothesis” at the end of the line, or you can write

“P(n)” at the end of the line.

o Whatever you write, make sure it’s clear when
you're applying the induction hypothesis

e Notice how we rewrite >7"1 k so as to be able to ap-

peal to the induction hypothesis. This is standard
operating procedure.
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Another example

Theorem: (1+z)" > 1+nx for all nonnegative integers
n and all z > —1. (Take 0° = 1.)

Proof: By induction on n. Let P(n) be the statement
(1+2)" > 14+ nx.

Basis: P(0) says (1 + ) > 1. This is clearly true.
Inductive Step: Assume P(n). We prove P(n +1).

=(1+2)"(1+2)

> (14 nz)(1 4+ z)[Induction hypothesis|
= 1+ nz + x + na’

=1+ (n+ 1)z + na?

>1+(n+ 1)z

e Why does this argument fail if z < —17

12



Towers of Hanoi

Problem: Move all the rings from pole 1 and pole 2,
moving one ring at a time, and never having a larger ring
on top of a smaller one.

How do we solve this?
e Think recursively!

e Suppose you could solve it for n — 1 rings? How could
you do it for n?

13



Solution
e Move top n — 1 rings from pole 1 to pole 3 (we can
do this by assumption)
o Pretend largest ring isn’t there at all

e Move largest ring from pole 1 to pole 2

e Move top n — 1 rings from pole 3 to pole 2 (we can
do this by assumption)

o Again, pretend largest ring isn’t there

This solution translates to a recursive algorithm:

e Suppose robot(r — s) is a command to a robot to
move the top ring on pole r to pole s

e Note that if r, s € {1,2, 3}, then 6 —r — s is the other
number in the set

procedure H(n,r, s) [Move n disks from 7 to s
if n = 1 then robot(r — s)
else Hn—1,r,6 —r — s)
robot(r — s)
Hn—1,6—1r—s,s)
endif
return
endpro
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Towers of Hanoi: Analysis

Theorem: It takes 2" — 1 moves to perform H(n,r,s),
for all positive n, and all 7, s € {1, 2, 3}.

Proof: Let P(n) be the statement “It takes 2" —1 moves
to perform H(n,r,s) and all ;s € {1,2,3}.

e Note that “for all positive n” is not part of P(n)!

e P(n) is a statement about a particular n.

o [f it were part of P(n), what would P(1) be?

Basis: P(1)is immediate: robot(r — ) is the only move
in H(1,r,s),and 2! — 1 =1.

Inductive step: Assume P(n). To perform H(n—+1,r, s),
we first do H(n,r,6 —r — s), then robot(r — s), then
H(n,6 —r — s,s). Altogether, this takes 2" — 1+ 1 +
2" — 1 =2 1 steps.

15



A Matching Lower Bound

Theorem: Any algorithm to move n rings from pole r
to pole s requires at least 2" — 1 steps.

Proof: By induction, taking the statement of the theo-
rem to be P(n).

Basis: Easy: Clearly it requires (at least) 1 step to move
1 ring from pole r to pole s.

Inductive step: Assume P(n). Suppose you have a se-
quence of steps to move n + 1 rings from r to s. There’s
a first time and a last time you move ring n + 1:

e Let k be the first time
e Let &/ be the last time.
e Possibly & = k' (if you only move ring n + 1 once)

Suppose at step k, you move ring n + 1 from pole r to
pole s'.

e You can’t assume that s' = s, although this is opti-
mal.

16



Key point:
e The top n rings have to be on the third pole, 6 —r — &’
e Otherwise, you couldn’t move ring n + 1 from r to s’.

By P(n), it took at least 2" — 1 moves to get the top n
rings to pole 6 — r — ',

At step &/, the last time you moved ring n + 1, suppose
you moved it from pole 7’ to s (it has to end up at s).

e the other n rings must be on pole 6 — r’ — s.

e By P(n), it takes at least 2" — 1 moves to get them
to ring s (where they have to end up).

So, altogether, there are at least 2(2" — 1)+ 1 = 2" —1
moves in your sequence:

e at least 2" — 1 moves before step £
e at least 2" — 1 moves after step &’
e step k itself.

If course, if k = k' (that is, if you move ring n + 1 more
than once) there are even more moves in your sequence.

17



Strong Induction

Sometimes when you're proving P(n + 1), you want to
be able to use P(j) for 7 < n, not just P(n). You can
do this with strong induction.

1. Let P(n) be the statement . .. [some statement involv-
ing n|

2. The basis step

e P(k) holds because ... |where k is the base case,
usually 0 or 1]

3. Inductive step

e Assume P(k), ..., P(n) holds. We show
P(n + 1) holds as follows . ..

Although strong induction looks stronger than induction,
it’s not. Anything you can do with strong induction,
you can also do with regular induction, by appropriately
modifying the induction hypothesis.

o [f P(n) is the statement you're trying to prove by
strong induction, let P’(n) be the statement P(1), ..., P(n)
hold. Proving P’(n) by regular induction is the same
as proving P(n) by strong induction.

18



An example using strong induction

Theorem: Any item costing n > 7 kopecks can be
bought using only 3-kopeck and 5-kopeck coins.

Proof: Using strong induction. Let P(n) be the state-
ment that n kopecks can be paid using 3-kopeck and 5-
kopeck coins, for n > 8.

Basis: P(8) is clearly true since 8 = 3 4 5.

Inductive step: Assume P(8),...,P(n) is true. We
want to show P(n 4+ 1). If n+1is 9 or 10, then it’s
easy to see that there’s no problem (P(9) is true since
9 = 3+ 3+ 3, and P(10) is true since 10 = 5+ 5).
Otherwise, note that (n +1) —3 = n —2 > 8. Thus,
P(n — 2) is true, using the induction hypothesis. This
means we can use 3- and b-kopeck coins to pay for some-
thing costing n—2 kopecks. One more 3-kopeck coin pays
for something costing n + 1 kopecks.

19



Bubble Sort

Suppose we wanted to sort n items. Here’s one way to
do it:

Input n [number of items to be sorted]
Wi, . . ., Wy, [items]

Algorithm BubbleSort
fori=1ton—1
for j=1ton—1
if w; > w; 1 then switch(w;, w;;1) endif
endfor
endfor

Why is this right:

e Intuitively, because largest elements “bubble up” to
the top

How many comparisons?

e Best case, worst case, average case all the same:

on—1)+n—-2)+---+1=nn-1)/2

20



Proving Bubble Sort Correct

We want to show that the algorithm is correct by induc-
tion. What'’s the statement of the induction?

Could take P(n) to be the statement: the algorithm
works correctly for n inputs.

e That turns out to be a tough induction statement to
work with.

e Suppose P(1) is true. How do you prove P(2)?

A better choice:

e P(k) is the statement that, if there are n inputs and
k < n — 1, then after k£ iterations of the outer loop,
Wp—_k41, - .-, Wy are the k largest items, sorted in the
right order.

o Note that P(k) is vacuously true if k& > n.

Basis: How do we prove P(1)? By a nested induction!

This time, take Q(I) to be the statement that, if | < n—1,
then after [ iterations of the inner loop, w41 > wy, for
=11

Basis: Q(1) holds because after the first iteration of the
inner loop, wy > w; (thanks to the switch statement).

21



Inductive step: Suppose that Q(1) is true. If [+1 > n—1,
then Q(l+ 1) is vacuously true. If [+ 1 < n, by Q(I), we
know that w41 > wy, for j = 1,...,1 after [ iterations.
The (I 4+ 1)st iteration of the inner loop compares w1
and wyo. After the (I + 1)st iteration, the bigger one is
wi4o. Thus, wiso > wiyy. By the induction hypothesis,
Wiy > wj, for g4+ 1,..., L

That completes the nested induction. Thus, Q(I) holds
forall [. Q(n—1)says that w, > w;forj=1,...,n—1.
That’s just what P(1) says. So we're done with the base
case of the main induction.

[Note: For areally careful proof, we need better notation
(for value of w; before and after the switch).]

Inductive step (for main induction): Assume P(k).
Thus, wgyq,...,w, are the k largest items. To prove
P(k + 1), we use nested induction again:

o Now (/) says “if i =k + 1, thenifl <n—(k+1),
after [ iterations of the inner loop, wiy; > wj, for
g=1,...,017

e Almost the same as before, except that instead of say-
ing “ifl <m—1", wesay “ifl <n—(k+1)”

olf ¢+ = k+ 1, we go through the inner loop only
n — (k+1) times.

22



Q(n—k — 1) says that, after the (k+ 1)st iteration of the
inner loop, w,—; > w, for j = 1,..., k. P(k) says that
the top k elements are w,,_p.1,...,w,, in that order.

Thus, the top k + 1 elements must be w,_g, ... w,
that order. This proves P(k + 1).

, 1N

Note that P(n — 1) says that after n — 1 iterations of the
outer loop (which is all there are), the top n — 1 elements
are ws, ...,W,. o0 wj has to be the smallest element,
and wq, ws, ..., w, is a sorted list.

23



