What's It All About? - \bullet Continuous mathematics—calculus—considers objects that vary continuously - o distance from the wall - Discrete mathematics considers *discrete* objects, that come in *discrete* bundles - o number of babies: can't have 1.2 The mathematical techniques for discrete mathematics differ from those for continuous mathematics: - counting/combinatorics - \bullet number theory - \bullet probability - logic We'll be studying these techniques in this course. 1 #### This Course We will be focusing on: - Tools for discrete mathematics: - computational number theory (handouts) - * the mathematics behind the RSA cryptosystems - o a little graph theory (Chapter 3) - o counting/combinatorics (Chapter 4) - o probability (Chapter 6) - * randomized algorithms for primality testing, routing - o logic (Chapter 7) - * how do you prove a program is correct - Tools for proving things: - o induction (Chapter 2) - o (to a lesser extent) recursion First, some background you'll need but may not have . . . ### Why is it computer science? This is basically a mathematics course: - no programming - lots of theorems to prove So why is it computer science? Discrete mathematics is the mathematics underlying almost all of computer science: - Designing high-speed networks - Finding good algorithms for sorting - Doing good web searches - Analysis of algorithms - Proving algorithms correct 2 #### Sets You need to be comfortable with set notation: ``` S = \{m|2 \leq m \leq 100, m \text{ is an integer}\} S is the set of all m such that m is between 2 and 100 and m is an integer. ``` 3 4 ## Important Sets (More notation you need to know and love ...) - N (occasionally $I\!\!N$): the nonnegative integers $\{0,1,2,3,\ldots\}$ - N^+ : the positive integers $\{1, 2, 3, \ldots\}$ - Z: all integers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ - Q: the rational numbers $\{a/b : a, b \in Z, b \neq 0\}$ - R: the real numbers - Q^+ , R^+ : the positive rationals/reals 0 # Set Operations • Union: $S \cup T$ is the set of all elements in S or T $$\circ S \cup T = \{x | x \in S \text{ or } x \in T\}$$ $$\circ \{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$$ • Intersection: $S \cap T$ is the set of all elements in both S and T $$\circ S \cap T = \{x | x \in S, x \in T\}$$ $$\circ \{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}$$ • Set Difference: S - T is the set of all elements in S not in T $$\circ S - T = \{x | x \in S, x \notin T\}$$ $$\circ \{3, 4, 5\} - \{1, 2, 3\} = \{4, 5\}$$ - - What is $\overline{\{1,2,3\}}$? - Complementation doesn't make sense unless there is a *universe*, the set of elements we want to consider. - \circ If U is the universe, $\overline{S} = \{x | x \in U, x \not\in S\}$ $$\circ \overline{S} = U - S.$$ **Set Notation** - $|S| = cardinality \ of \ (number of elements in) \ S$ • $|\{a,b,c\}| = 3$ - Subset: $A \subset B$ if every element of A is an element of B - \circ Note: Lots of people (including me, but not the authors of the text) usually write $A \subset B$ only if A is a *strict* or *proper* subset of B (i.e., $A \neq B$). I write $A \subseteq B$ if A = B is possible. - Power set: $\mathcal{P}(S)$ is the set of all subsets of S (sometimes denoted 2^{S}). ∘ E.g., $$\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$$ ∘ $|\mathcal{P}(S)| = 2^{|S|}$ 6 #### Venn Diagrams Sometimes a picture is worth a thousand words (at least if we don't have too many sets involved). #### A Connection **Lemma:** For all sets S and T, we have $$S = (S \cap T) \cup (S - T)$$ **Proof:** We'll show (1) $S \subset (S \cap T) \cup (S - T)$ and (2) $(S \cap T) \cup (S - T) \subset S$. For (1), suppose $x \in S$. Either (a) $x \in T$ or (b) $x \notin T$. If (a) holds, then $x \in S \cap T$. If (b) holds, then $x \in S - T$. In either case, $x \in (S \cap T) \cup (S - T)$. Since this is true for all $x \in S$, we have (1). For (2), suppose $x \in (S \cap T) \cup (S - T)$. Thus, either (a) $x \in (S \cap T)$ or $x \in (S - T)$. Either way, $x \in S$. Since this is true for all $x \in (S \cap T) \cup (S - T)$, we have (2). 9 2. One way to show $S \subset T$ is to show that for every $x \in S$, x is also in T. 1. One way to show S = T is to show $S \subset T$ and $T \subset S$. Two Important Morals 10 #### Relations • Cartesian product: $$S \times T = \{(s,t) : s \in S, t \in T\}$$ $$\circ \{1,2,3\} \times \{3,4\} =$$ $$\{(1,3),(2,3),(3,3),(1,4),(2,4),(3,4)\}$$ $$\circ |S \times T| = |S| \times |T|.$$ - \bullet A relation on S and T (or, on $S\times T)$ is a subset of $S\times T$ - A relation on S is a subset of $S \times S$ - Taller than is a relation on people: (Joe,Sam) is in the Taller than relation if Joe is Taller than Sam - \circ Larger than is a relation on R: $$L = \{(x, y) | x, y \in R, x > y\}$$ \circ Divisibility is a relation on N: $$D=\{(x,y)|x,y\in N,x|y\}$$ # Reflexivity, Symmetry, Transitivity - A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$. - $\circ \leq$ is reflexive; < is not - A relation R on S is symmetric if $(x, y) \in R$ implies $(y, x) \in R$. - "sibling-of" is symmetric (what about "sister of") - $\circ \le$ is not symmetric - A relation R on S is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$. - o "parent-of" is not transitive; "ancestor-of" is Pictorially, we have: #### **Transitive Closure** [[NOT DISCUSSED ENOUGH IN THE TEXT]] The transitive closure of a relation R is the least relation R^* such that - 1. $R \subset R^*$ - 2. R^* is transitive (so that if $(u, v), (v, w) \in R^*$, then so is (u, w)). **Example:** Suppose $R = \{(1, 2), (2, 3), (1, 4)\}.$ - $R^* = \{(1,2), (1,3), (2,3), (1,4)\}$ - we need to add (1,3), because $(1,2),(2,3) \in R$ Note that we don't need to add (2,4). - If (2,1), (1,4) were in R, then we'd need (2,4) - (1,2), (1,4) doesn't force us to add anything (it doesn't fit the "pattern" of transitivity. Note that if R is already transitive, then $R^* = R$. #### **Equivalence Relations** ullet A relation R is an equivalence relation if it is reflexive, symmetric, and transitive - $\circ = is$ an equivalence relation - \circ Parity is an equivalence relation on N; (x, y) \in Parity if x - y is even 13 #### **Functions** We think of a function $f: S \to T$ as providing a mapping from S to T. But . . . Formally, a function is a relation R on $S \times T$ such that for each $s \in S$, there is a unique $t \in T$ such that $(s, t) \in R$. If $f: S \to T$, then S is the domain of f, T is the range; $\{y: f(x) = y \text{ for some } x \in S\}$ is the image. We often think of a function as being characterized by an algebraic formula • $$y = 3x - 2$$ characterizes $f(x) = 3x - 2$. It ain't necessarily so. - Some formulas don't characterize functions: • $x^2 + y^2 = 1$ defines a circle; no unique y for each x - Some functions can't be characterized by algebraic formulas $$\circ f(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$$ # **Function Terminology** Suppose $f: S \to T$ • f is onto (or surjective) if, for each $t \in T$, there is some $s \in S$ such that f(s) = t. $$\circ$$ if $f: R^+ \to R^+$, $f(x) = x^2$, then f is onto \circ if $f: R \to R$, $f(x) = x^2$, then f is not onto • f is one-to-one (1-1, injective) if it is not the case that $s \neq s'$ and f(s) = f(s'). $$\begin{array}{l} \circ \text{ if } f:R^+ \to R^+,\, f(x)=x^2,\, \text{then } f \text{ is 1--1} \\ \circ \text{ if } f:R \to R,\, f(x)=x^2,\, \text{then } f \text{ is } not \text{ 1--1}. \end{array}$$ 17 • a function is *bijective* if it is 1-1 and onto. $$\circ$$ if $f: R^+ \to R^+$, $f(x) = x^2$, then f is bijective \circ if $f: R \to R$, $f(x) = x^2$, then f is not bijective. If $f: S \to T$ is bijective, then $|S| = |T|$. 18 #### **Inverse Functions** If $f: S \to T$, then f^{-1} maps an element in the range of f to all the elements that are mapped to it by f. $$f^{-1}(t) = \{s | f(s) = t\}$$ • if f(2) = 3, then $2 \in f^{-1}(3)$. f^{-1} is not a function from range(f) to S. It is a function if f is one-to-one. • In this case, $f^{-1}(f(x)) = x$. # Functions You Should Know (and Love) • Absolute value: Domain = R; Range = $\{0\} \cup R^+$ $$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$ $$\circ |3| = |-3| = 3$$ • Floor function: Domain = R; Range = Z|x| =largest integer not greater than x $$|3.2| = 3; |\sqrt{3}| = 1; |-2.5| = -3$$ • Ceiling function: Domain = R; Range = Z $$\lceil x \rceil$$ = smallest integer not less than x $$\circ \lceil 3.2 \rceil = 4; \lceil \sqrt{3} \rceil = 2; \lceil -2.5 \rceil = -2$$ • Factorial function: Domain = Range = N $$n! = n(n-1)(n-2)...3 \times 2 \times 1$$ $$\circ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$ $$\circ$$ By convention, $0! = 1$ # Exponents Exponential with base a: Domain = R, Range= R^+ $$f(x) = a^x$$ - Note: a, the base, is fixed; x varies - You probably know: $a^n = a \times \cdots \times a$ (*n* times) How do we define f(x) if x is not a positive integer? • Want: (1) $a^{x+y} = a^x a^y$; (2) $a^1 = a$ This means - $\bullet \ a^2 = a^{1+1} = a^1 a^1 = a \times a$ - $\bullet \ a^3=a^{2+1}=a^2a^1=a\times a\times a$ - . . - $a^n = a \times ... \times a \ (n \text{ times})$ We get more: - $\bullet \ a = a^1 = a^{1+0} = a \times a^0$ - \circ Therefore $a^0 = 1$ - $1 = a^0 = a^{b+(-b)} = a^b \times a^{-b}$ - \circ Therefore $a^{-b} = 1/a^b$ 21 - $a = a^1 = a^{\frac{1}{2} + \frac{1}{2}} = a^{\frac{1}{2}} \times a^{\frac{1}{2}} = (a^{\frac{1}{2}})^2$ • Therefore $a^{\frac{1}{2}} = \sqrt{a}$ - Similar arguments show that $a^{\frac{1}{k}} = \sqrt[k]{a}$ - $a^{mx} = a^x \times \cdots \times a^x (m \text{ times}) = (a^x)^m$ - Thus, $a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m$. This determines a^x for all x rational. The rest follows by continuity. 22 # Computing a^n quickly What's the best way to compute a^{1000} ? One way: multiply $a \times a \times a \times a \dots$ • This requires 999 multiplications. Can we do better? How many multiplications are needed to compute: - $\bullet a^2$ - a4 - $\bullet a^8$ - $\bullet a^{16}$ - . . . Write 1000 in binary: 1111101000 • How many multiplications are needed to calculate a^{1000} ? ## Logarithms Logarithm base a: Domain = R^+ ; Range = R $$y = \log_a(x) \Leftrightarrow a^y = x$$ • $\log_2(8) = 3$; $\log_2(16) = 4$; $3 < \log_2(15) < 4$ The key properties of the log function follow from those for the exponential: - 1. $\log_a(1) = 0$ (because $a^0 = 1$) - 2. $\log_a(a) = 1$ (because $a^1 = a$) - $3. \log_a(xy) = \log_a(x) + \log_a(y)$ **Proof:** Suppose $\log_a(x) = z_1$ and $\log_a(y) = z_2$. Then $a^{z_1} = x$ and $a^{z_2} = y$. Therefore $xy = a^{z_1} \times a^{z_2} = a^{z_1 + z_2}$. Thus $\log_a(xy) = z_1 + z_2 = \log_a(x) + \log_a(y)$. - $4. \log_a(x^r) = r \log_a(x)$ - 5. $\log_a(1/x) = -\log_a(x)$ (because $a^{-y} = 1/a^y$) - 6. $\log_b(x) = \log_a(x)/\log_a(b)$ #### **Examples:** - $\log_2(1/4) = -\log_2(4) = -2$. - $\log_2(-4)$ undefined $$\log_2(2^{10}3^5)$$ $$= \log_2(2^{10}) + \log_2(3^5)$$ $$= 10 \log_2(2) + 5 \log_2(3)$$ $$= 10 + 5 \log_2(3)$$ #### Limit Properties of the Log Function $$\lim_{x \to \infty} \log(x) = \infty$$ $$\lim_{x \to \infty} \frac{\log(x)}{x} = 0$$ As x gets large $\log(x)$ grows without bound. But x grows MUCH faster than $\log(x)$. In fact, $$\lim_{x\to\infty} (\log(x)^m)/x = 0$$ 26 # Polynomials 25 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$ is a polynomial function. • a_0, \ldots, a_k are the coefficients You need to know how to multiply polynomials: $$(2x^3 + 3x)(x^2 + 3x + 1)$$ = $2x^3(x^2 + 3x + 1) + 3x(x^2 + 3x + 1)$ = $2x^5 + 6x^4 + 2x^3 + 3x^3 + 9x^2 + 3x$ = $2x^5 + 6x^4 + 5x^3 + 9x^2 + 3x$ Exponentials grow MUCH faster than polynomials: $$\lim_{x \to \infty} \frac{a_0 + \dots + a_k x^k}{b^x} = 0 \text{ if } b > 1$$ # Why Rates of Growth Matter Suppose you want to design an algorithm to do sorting. - The naive algorithm takes time $n^2/4$ on average to sort n items - \bullet A more sophisticated algorithm times time $2n\log(n)$ Which is better? $$\lim_{n\to\infty}(2n\log(n)/(n^2/4))=\lim_{n\to\infty}(8\log(n)/n)=0$$ For example, • if $n = 1,000,000, 2n \log(n) = 40,000,000$ — this is doable $$n^2/4 = 250,000,000,000$$ — this is not doable Algorithms that take exponential time are hopeless on large datasets. #### **Sum and Product Notation** $$\sum_{i=0}^{k} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$ $$\sum_{i=2}^{5} i^2 = 2^2 + 3^2 + 4^2 + 5^2 = 54$$ Can limit the set of values taken on by the index i: $$\sum_{\{i:2 \le i \le 8|i \text{ even}\}} a_i = a_2 + a_4 + a_6 + a_8$$ Can have double sums: $$\Sigma_{i=1}^{2} \Sigma_{j=0}^{3} a_{ij}$$ $$= \Sigma_{i=1}^{2} (\Sigma_{j=0}^{3} a_{ij})$$ $$= \Sigma_{j=0}^{3} a_{1j} + \Sigma_{j=0}^{3} a_{2j}$$ $$= a_{10} + a_{11} + a_{12} + a_{13} + a_{20} + a_{21} + a_{22} + a_{23}$$ Product notation similar: $$\prod_{i=0}^k a_i = a_0 a_1 \cdots a_k$$ 29 ## Matrix Algebra An $m \times n$ matrix is a two-dimensional array of numbers, with m rows and n columns: $$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$ - A $1 \times n$ matrix $[a_1 \dots a_n]$ is a row vector. - An $m \times 1$ matrix is a column vector. We can add two $m \times n$ matrices: • If $A = [a_{ij}]$ and $B = [b_{ij}]$ then $A + B = [a_{ij} + b_{ij}]$. $$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 3 & 7 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 9 & 9 \end{bmatrix}$$ Another important operation: transposition. • If we transpose an $m \times n$ matrix, we get an $n \times m$ matrix by switching the rows and columns. $$\begin{bmatrix} 2 & 3 & 9 \\ 5 & 7 & 12 \end{bmatrix}^T = \begin{bmatrix} 2 & 5 \\ 3 & 7 \\ 9 & 12 \end{bmatrix}$$ #### Changing the Limits of Summation This is like changing the limits of integration. $$\bullet \ \Sigma_{i=1}^{n+1} \ a_i = \Sigma_{i=0}^n \ a_{i+1} = a_1 + \dots + a_{n+1}$$ Steps: - Start with $\Sigma_{i=1}^{n+1} a_i$. - Let j = i 1. Thus, i = j + 1. - Rewrite limits in terms of j: $i=1 \rightarrow j=0; i=n+1 \rightarrow j=n$ - Rewrite body in terms of $a_i \to a_{j+1}$ - Get $\sum_{j=0}^{n} a_{j+1}$ - Now replace j by i (j is a dummy variable). Get $$\sum_{i=0}^{n} a_{i+1}$$ 30