What’s It All About?

e Continuous mathematics—calculus—considers objects
that vary continuously

o distance from the wall

e Discrete mathematics considers discrete objects, that
come in discrete bundles

o number of babies: can’t have 1.2

The mathematical techniques for discrete mathematics
differ from those for continuous mathematics:

e counting/combinatorics
e number theory

e probability

e logic

We'll be studying these techniques in this course.

Why is it computer science?

This is basically a mathematics course:
e 10 programming
e lots of theorems to prove
So why is it computer science?
Discrete mathematics is the mathematics underlying al-
most all of computer science:
e Designing high-speed networks
e Finding good algorithms for sorting
e Doing good web searches
e Analysis of algorithms

e Proving algorithms correct

This Course

We will be focusing on:
e Tools for discrete mathematics:

o computational number theory (handouts)
* the mathematics behind the RSA cryptosystems
o a little graph theory (Chapter 3)
o counting/combinatorics (Chapter 4)
o probability (Chapter 6)
+ randomized algorithms for primality testing, rout-
ing
o logic (Chapter 7)
* how do you prove a program is correct
e Tools for proving things:
o induction (Chapter 2)

o (to a lesser extent) recursion

First, some background you’ll need but may not have ...

Sets

You need to be comfortable with set notation:

S ={m|2 <m < 100, m is an integer}
S is
the set of
all m
such that
m is between 2 and 100
and
m is an integer.




Important Sets

(More notation you need to know and love ...)
e N (occasionally IN): the nonnegative integers {0, 1, 2,3, ...}
e N the positive integers {1,2,3,...}
e Z: all integers {...,—3,-2,-1,0,1,2,3,...}
e (): the rational numbers {a/b: a,b € Z,b # 0}
e R: the real numbers

e Q" R™: the positive rationals/reals

Set Notation

e |S| = cardinality of (number of elements in) S
o [{a,b,c}| =3

e Subset: A C B if every element of A is an element
of B

o Note: Lots of people (including me, but not the
authors of the text) usually write A C B only if
A is a strict or proper subset of B (i.e., A # B).
[ write A C B if A= B is possible.

e Power set: P(S) is the set of all subsets of S (some-
times denoted 2°).

o Eg., P({1,2,3}) =
{041}, {2}, {3}, {1.2}, {1, 3}, {2, 3}, {1,2,3}}
o [P(S)] = 2

Set Operations

e Union: S UT is the set of all elements in .S or T’
oSUT ={zlx e SorxzeT}
0 {1,2,3}U{3,4,5} ={1,2,3,4,5}
e Intersection: SNT is the set of all elements in both
S and T
oSNT ={zlx € S,x €T}
0 {1,2,3} N {3,4,5} = {3}
e Set Difference: S — T is the set of all elements in
S not in T’
oS—T={zlzreS,x¢ T}
0 {3,4,5} — {1,2,3} = {4,5}
e Complementation: S is the set of elements not in
S
o What is {1,2,3}7
o Complementation doesn’t make sense unless there
is a universe, the set of elements we want to con-
sider.
o It U is the universe, S = {z|zr € U,z ¢ S}
oS=U-25.

Venn Diagrams

Sometimes a picture is worth a thousand words (at least
if we don’t have too many sets involved).




A Connection

Lemma: For all sets S and T, we have
S=lnNT)U(S—-1)

Proof: We'll show (1) S € (SNT)U (S —T) and (2)

(SNTYUu(S-T)CS.

For (1), suppose x € S. Either
(a)zeTor(b)x¢T.

If (a) holds, then z € SNT.

If (b) holds, then z € S — T

In either case, z € (SNT)U (S —T).

Since this is true for all z € S, we have (1).

For (2), suppose x € (SNT)U (S —T'). Thus, either (a)
ze(SNT)orze (S—T). Either way, x € S.

Since this is true for all x € (SNT)U (S —T), we have

(2)-

Two Important Morals

1. One way toshow .S = T'istoshow S C T'and T C S.

2. One way to show S C T is to show that for every
r €S, xisalsoin T.

Relations

e Cartesian product:
SxT=A(s,t):se€S,teT}

0 {1,2,3} x {3,4} =

{(1,3),(2,3),(3,3),(1,4),(2,4), (3,4)}
o |SxT| =S| x|T).

e A relation on S and T' (or, on S x T') is a subset of
SxT

o A relation on S is a subset of S x S

o Taller than is a relation on people: (Joe,Sam) is
in the Taller than relation if Joe is Taller than Sam

o Larger than is a relation on R:
L={(z,y)lz.y € R,z >y}
o Divisibility is a relation on V:

D ={(z,y)lz,y € N, zly}

Reflexivity, Symmetry, Transitivity

o A relation R on S is reflezive if (z,z) € R for all
zeSl.

o < is reflexive; < is not

e A relation R on S is symmetric if (z,y) € R implies

(y,z) € R.
o “sibling-of” is symmetric (what about “sister of”)
o < is not symmetric

e A relation R on S is transitive if (z,y) € R and
(y,z) € R implies (z, z) € R.

o <, <, >, > are all transitive;

o “parent-of” is not transitive; “ancestor-of” is

Pictorially, we have:




Transitive Closure

[NOT DISCUSSED ENOUGH IN THE TEXT])

The transitive closure of a relation R is the least relation
R* such that

ILRCR
2. R* is transitive (so that if (u,v), (v,w) € R*, then so
is (u, w)).
Example: Suppose R = {(1,2),(2,3),(1,4)}.
o B = {(1,2),(1,3),(2,3), (1, )}
e we need to add (1,3), because (1,2),(2,3) € R
Note that we don’t need to add (2,4).
o If (2,1), (1,4) were in R, then we'd need (2,4)

e (1,2), (1,4) doesn’t force us to add anything (it doesn’t
fit the “pattern” of transitivity.

Note that if R is already transitive, then R* = R.

Equivalence Relations

e A relation R is an equivalence relation if it is reflex-
ive, symmetric, and transitive
o = is an equivalence relation

o Parity is an equivalence relation on N;
(x,y) € Parity if x — y is even

Functions

We think of a function f : S — T as providing a mapping
from S toT. But ...

Formally, a function is a relation R on S x T such that for
cach s € S, there is a unique ¢ € T such that (s, t) € R.

If f:5 — T, then S is the domain of f, T is the range;
{y : f(z) =y for some z € S} is the image.

We often think of a function as being characterized by an
algebraic formula

e y = 3z — 2 characterizes f(z) = 3z — 2.
It ain’t necessarily so.
e Some formulas don’t characterize functions:
o 2%+ y? = 1 defines a circle; no unique y for each

e Some functions can’t be characterized by algebraic
formulas

0 if n is even
o f(n) = 1 if n is odd




Function Terminology

Suppose f: S —= T

e f is onto (or surjective) if, for each ¢ € T, there is
some s € S such that f(s) =+¢.

oif f: Rt — R, f(x) = 27 then f is onto
oif f: R— R, f(z)=a? then f is not onto

e f is one-to-one (1-1, injective) if it is not the case

that s # ¢’ and f(s) = f(s').

oif f: R" — R*, f(x) =22 then fis 1-1
oif f: R— R, f(x) = 22, then f is not 1-1.
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e a function is bijective if it is 1-1 and onto.

oif f: RY — R*, f(z) = 22 then f is bijective
oif f: R— R, f(x) = 22, then f is not bijective.
If f:S — T is bijective, then |S| = |T.

Inverse Functions

If f:S— T, then f~! maps an element in the range of
f to all the elements that are mapped to it by f.

F7H) = {slf(s) =t}

oif f(2) =3, then2 € f71(3).

f~1is not a function from range(f) to S.

It is a function if f is one-to-one.

e In this case, f~1(f(z)) = =.

Functions You Should Know
(and Love)

e Absolute value: Domain = R; Range = {0} U R"

r x>0
—x ifx <0

|z =
ol3|=]1-3=3
e Floor function: Domain = R; Range = Z
|z| = largest integer not greater than x
o[3.2] =3; V3] =1; |-2.5] = -3
e Ceiling function: Domain = R; Range = Z
[x] = smallest integer not less than x
0[32]=4;[V3] =2 [-25] = 2
e Factorial function: Domain = Range = N
nl=nn—-1)(n-2)..3x2x1
05l=5x4x3x2x1=120

o By convention, 0! =1




Exponents

Exponential with base a: Domain = R, Range=R*
flx)=a”
e Note: a, the base, is fixed; x varies
e You probably know: a” =a X - -+ X a (n times)
How do we define f(z) if 2 is not a positive integer?
e Want: (1) a”*¥ = a*a?; (2) a' = a
This means

eal=at'=dlal=axa

S=a2l=¢2l=axaxa

ea"=aX...Xa(n times)

We get more:

1 1+0

ea=a'=at=qxa

o Therefore a® = 1
o1 = = g+ (b — gb x g~*

o Therefore a=® = 1/a’
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1,1 1 1
.a:a1:a7+7:a7xa :(a?)Q

1
o Therefore az = y/a

e Similar arguments show that at = Va

xrym

e " =qag"X -+ X al‘(m times) — (aJL)
o Thus, an = (a%)’” = (Ya)™.

This determines a* for all x rational. The rest follows by
continuity.

Computing o' quickly

What’s the best way to compute a'*?
One way: multiply a X a X a X a. ..
e This requires 999 multiplications.

Can we do better?
How many multiplications are needed to compute:

Write 1000 in binary: 1111101000

e How many multiplications are needed to calculate a

10009

Logarithms

Logarithm base a: Domain = RT; Range = R
y =log,(r) & ad’ =2
0 10g,(8) = 3; logy(16) = 4; 3 < logy(15) < 4

The key properties of the log function follow from those
for the exponential:

1. log,(1) = 0 (because a” = 1)

L= q)

2. log,(a) =1 (because a
3. log, (2y) = log, () + log,(y)
Proof: Suppose log,(z) = 21 and log,(y) = 2.
Then a*! = z and a® = y.
Therefore zy = a* x a® = 1?2,
Thus log,(xy) = 21 + 22 = log,(x) + log,(y).
Nog,(2") = rlog,(x)
og,(1/x) = —log,(x) (because a™¥ = 1/a¥)

logy(x) = log,(x)/ log,(b)




Examples:

o logy(1/4) = —logy(4) = —2.
e log,(—4) undefined
[ ]
log,(293°)
log,(2") + logy(3°)
101og,(2) + 5logy(3)
= 10+ 5logy(3)

Limit Properties of the Log Function

As x gets large log(z) grows without bound.

But = grows MUCH faster than log(z).

In fact, lim,—,(log(z)™)/z =0

Polynomials

f(x) = ag + ayx + asx® + -+ + a2’ is a polynomial
function.

® ag, ..., ay are the coefficients
You need to know how to multiply polynomials:
(2% + 3x)(2* + 3z + 1)
203(x* + 3 + 1) + 3x(2* + 3z + 1)

= 22° + 6% + 203 + 32® + 922 + 3z
= 22° 4+ 62t + 52 + 922 + 32

Exponentials grow MUCH faster than polynomials:

ag + -+ - + apa®
B

=0ifb>1

lim
Tr—00

Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

e The naive algorithm takes time n?/4 on average to
sort n items

e A more sophisticated algorithm times time 2n log(n)

Which is better?

Jim (2nlog(n)/(n?/4)) = lim (8log(n)/n) =0
For example,
e if n = 1,000,000, 2nlog(n) = 40,000,000 — this is
doable
n? /4 = 250,000,000, 000 — this is not doable

Algorithms that take exponential time are hopeless on
large datasets.




Sum and Product Notation

k .
'Zo a;r’ = ag+ ax + asx® + - - + apa®
i=

Y2 =02 432442452 =54
1=2

Can limit the set of values taken on by the indez i:

a; = az+ as+ ag + as
{i:2<i<8|i even}

Can have double sums:

2 3
E%:l Z]‘S:O Qij
= ¥ (S0 aij)
_ 3 L3 .
Tz a1j + o A2;
= ajo + a1 + a2 + a1z + ax + ag) + age + asg

Product notation similar:

k
I a; =apa;---ak
i=0

Changing the Limits of Summation

This is like changing the limits of integration.

o st a; =y a1 = a1+ + app

Steps:
e Start with >l a;.

elet j=i—1 Thus,i=7+1.

e Rewrite limits in terms of j: ¢ =1 — j = 0; ¢
n+l—=7=n

e Rewrite body in terms of a; — a1
n
o Get E]-:() Aj41

e Now replace j by i (j is a dummy variable). Get

>
Qi1
=0 "

Matrix Algebra

An m x n matrizis a two-dimensional array of numbers,
with m rows and n columns:

@11 @12 - Qin
g1 G2 - Qd2p

Aml Gm2 * - Qmqn
e A1 X n matrix [ag . ..a,) is a row vector.
e An m x 1 matrix is a column vector.

We can add two m x n matrices:
o If A=la;] and B = [b;] then A+ B = [a;; + bj].
23 37 510

57/ 1a2] 799
Another important operation: transposition.
e If we transpose an m X m matrix, we get an n X m
matrix by switching the rows and columns.
25
=137
912

23 91"
5712




