Breadth-First Search

Input $G(V, E)$
[a connected graph] [start vertex]

Algorithm Breadth-First Search

visit v

$V^{\prime} \leftarrow\{v\} \quad\left[V^{\prime}\right.$ is the vertices already visited] Put v on Q
[Q is a queue]
repeat while $Q \neq \emptyset$
$u \leftarrow \operatorname{head}(Q)[h e a d(Q)$ is the first item on $Q]$
for $w \in A(u) \quad[A(u)=\{w \mid\{u, w\} \in E\}]$ if $w \notin V^{\prime}$ then visit w

$$
\text { Put } w \text { on } Q
$$ $V^{\prime} \leftarrow V^{\prime} \cup\{w\}$

endif
endfor
Delete u from Q
The BFS algorithm basically finds a tree embedded in the graph.

- This is called the BFS search tree

BFS and Shortest Length Paths

If all edges have equal length, we can extend this algorithm to find the shortest path length from v to any other vertex:

- Store the path length with each node when you add it.
- Length $(v)=0$.
- Length $(w)=$ Length $(u)+1$

With a little more work, can actually output the shortest path from u to v.

- This is an example of how BFS and DFS arise unexpectedly in a number of applications.
- We'll see a few more

Depth-First Search

Input $G(V, E)$
v
[a connected graph]
[start vertex]

Algorithm Depth-First Search

visit v
$V^{\prime} \leftarrow\{v\} \quad\left[V^{\prime}\right.$ is the vertices already visited $]$
Put v on $S \quad[S$ is a stack]
$u \leftarrow v$
repeat while $S \neq \emptyset$
if $A(u)-V^{\prime} \neq \emptyset$
then Choose $w \in A(u)-V^{\prime}$
visit w
$V^{\prime}=V^{\prime} \cup\{w\}$
Put w on stack
$u \leftarrow w$
else $u \leftarrow t o p(S)$
[Pop the stack]
endif
endrepeat
DFS uses backtracking

- Go as far as you can until you get stuck
- Then go back to the first point you had an untried choice

Spanning Trees

A spanning tree of a connected graph $G(V, E)$ is a connected acyclic subgraph of G, which includes all the vertices in V and only (some) edges from E.

Think of a spanning tree as a "backbone"; a minimal set of edges that will let you get everywhere in a graph.

- Technically, a spanning tree isn't a tree, because it isn't directed.

The BFS search tree and the DFS search tree are both spanning trees.

- In the text, they give algorithms to produce minimum weight spanning trees
- That's done in CS 482, so we won't do it here.

Graph Coloring

How many colors do you need to color the vertices of a graph so that no two adjacent vertices have the same color?

- Application: scheduling
- Vertices of the graph are courses
- Two courses taught by same prof are joined by edge
- Colors are possible times class can be taught.

Lots of similar applications:

- E.g. assigning wavelengths to cell phone conversations to avoid interference.
- Vertices are conversations
- Edges between "nearby" conversations
- Colors are wavelengths.
- Scheduling final exams
- Vertices are courses
- Edges between courses with overlapping enrollment
- Colors are exam times.

Chromatic Number

The chromatic number of a graph G, written $\chi(G)$, is the smallest number of colors needed to color it so that no two adjacent vertices have the same color.

Examples:

A graph G is k-colorable if $k \geq \chi(G)$.

Determining $\chi(G)$

Some observations:

- If G is a complete graph with n vertices, $\chi(G)=n$
- If G has a clique of size k, then $\chi(G) \geq k$.
- Let $c(G)$ be the clique number of G : the size of the largest clique in G. Then

$$
\chi(G) \geq c(G)
$$

- If $\Delta(G)$ is the maximum degree of any vertex, then

$$
\chi(G) \leq \Delta(G)+1:
$$

- Color G one vertex at a time; color each vertex with the "smallest" color not used for a colored vertex adjacent to it.
How hard is it to determine if $\chi(G) \leq k$?
- It's NP complete, just like
- determining if $c(G) \geq k$
- determining if G has a Hamiltonian path
- determining if a propositional formula is satisfiable

Can guess and verify.

Bipartite Graphs

A graph $G(V, E)$ is bipartite if we can partition V into disjoint sets V_{1} and V_{2} such that all the edges in E joins a vertex in V_{1} to one in V_{2}.

- A graph is bipartite iff it is 2-colorable
- Everything in V_{1} gets one color, everything in V_{2} gets the other color.

Example: Suppose we want to represent the "is or has been married to" relation on people. Can partition the set V of people into males $\left(V_{1}\right)$ and females $\left(V_{2}\right)$. Edges join two people who are or have been married.

Characterizing Bipartite Graphs

Theorem: G is bipartite iff G has no odd-length cycles.
Proof: Suppose that G is bipartite, and it has edges only between V_{1} and V_{2}. Suppose, to get a contradiction, that $\left(x_{0}, x_{1}, \ldots, x_{2 k}, x_{0}\right)$ is an odd-length cycle. If $x_{0} \in V_{1}$, then x_{2} is in V_{1}. An easy induction argument shows that $x_{2 i} \in V_{1}$ and $x_{2 i+1} \in V_{2}$ for $0=1, \ldots, k$. But then the edge between $x_{2 k}$ and x_{0} means that there is an edge between two nodes in V_{1}; this is a contradiction.

- Get a similar contradiction if $x_{0} \in V_{2}$.

Conversely, suppose $G(V, E)$ has no odd-length cycles.

- Partition the vertices in V into two sets as follows:
- Start at an arbitrary vertex x_{0}; put it in V_{0}.
- Put all the vertices one step from x_{0} into V_{1}
- Put all the vertices two steps from x_{0} into V_{0}; - ...

This construction works if G is connected and has no odd-length cycles.

- What if G isn't connected?

This construction also gives a polynomial-time algorithm for checking if a graph is bipartite.

The Four-Color Theorem

Can a map be colored with four colors, so that no countries with common borders have the same color?

- This is an instance of graph coloring
- The vertices are countries
- Two vertices are joined by an edge if the countries they represent have a common border

A planar graph is one where all the edges can be drawn on a plane (piece of paper) without any edges crossing.

- The graph of a map is planar

Graphs that are planar and ones that aren't:

Four-Color Theorem: Every map can be colored using at most four colors so that no two countries with a common boundary have the same color.

- Equivalently: every planar graph is four-colorable

10

Four-Color Theorem: History

- First conjectured by in 1852
- Five-colorability was long known
- "Proof" given in 1879; proof shown wrong in 1891
- Proved by Appel and Haken in 1976
- 140 journal pages +100 hours of computer time
- They reduced it to 1936 cases, which they checked by computer
- Proof simplified in 1996 by Robertson, Sanders, Seymour, and Thomas
- But even their proof requires computer checking
- They also gave an $O\left(n^{2}\right)$ algorithm for four coloring a planar graph
- Proof checked by Coq theorem prover (Werner and Gonthier) in 2004
- So you don't have to trust the proof, just the theorem prover

Note that the theorem doesn't apply to countries with non-contiguous regions (like U.S. and Alaska).

Topological Sorting

[NOT IN TEXT]

If $G(V, E)$ is a dag: directed acyclic graph, then a topological sort of G is a total ordering \prec of the vertices in V such that if $\left(v, v^{\prime}\right) \in E$, then $v \prec v^{\prime}$.

- Application: suppose we want to schedule jobs, but some jobs have to be done before others
- vertices on dag represent jobs
- edges describe precedence
- topological sort gives an acceptable schedule

Theorem: Every dag has at least one topological sort.
Proof: Two algorithms. Both depend on this fact:

- If $V \neq \emptyset$, some vertices in V have indegree 0 .
- If all vertices in V have indegree >0, then G has a cycle: start at some $v \in V$, go to a parent v^{\prime} of v, a parent $v^{\prime \prime}$ of v^{\prime}, etc.
* Eventually a node is repeated; this gives a cycle

Algorithm 1: Number the nodes of indegree 0 arbitrarily. Then remove them and the edges leading out of them. You still have a dag. It has nodes of indegree 0 . Number them arbitrarily (but with a higer number than the original set of nodes of indegree 0). Continue ... This gives a topological sort.
Algorithm 2: Add a "virtual node" v^{*} to the graph, and an edge from v^{*} to all nodes with indegree 0

- Do a DFS starting at v^{*}. Output a node after you've processed all the children of that node.
- Note that you'll output v^{*} last
- If there's an edge from u to v, you'll output v before u
- Reverse the order (so that v^{*} is first) and drop v^{*} That's a topological sort.
- This can be done in time linear in $|V|+|E|$

Graph Isomorphism

When are two graphs that may look different when they're drawn, really the same?

Answer: $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ are isomorphic if they have the same number of vertices $\left(\left|V_{1}\right|=\left|V_{2}\right|\right)$ and we can relabel the vertices in G_{2} so that the edge sets are identical.

- Formally, G_{1} is isomorphic to G_{2} if there is a bijection $f: V_{1} \rightarrow V_{2}$ such that $\left\{v, v^{\prime}\right\} \in E_{1}$ iff $\left(\left\{f(v), f\left(v^{\prime}\right)\right\} \in E_{2}\right.$.
- Note this means that $\left|E_{1}\right|=\left|E_{2}\right|$

Checking for Graph Isomorphism

There are some obvious requirements for $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ to be isomorphic:

- $\left|V_{1}\right|=\left|V_{2}\right|$
- $\left|E_{1}\right|=\left|E_{2}\right|$
- for each d, \#(vertices in V_{1} with degree $\left.d\right)=\#($ vertices in V_{1} with degree d)
Checking for isomorphism is in NP:
- Guess an isomorphism f and verify
- We believe it's not in polynomial time and not NP complete.

Game Trees

Trees are particularly useful for representing and analyzing games.

Example Daisy (aka Nim):

- players alternate picking petals from a daisy.
- A player gets to pick 1 or 2 petals.
- Whoever picks the last one wins.
- There's another version where whoever takes the last one loses
- both get analyzed the same way

Here's the game tree for 4-petal daisy:

A Fun Application of Graphs

A farmer is bringing a wolf, a cabbage, and a goat to market. They need to cross a river in a boat which can accommodate only two things, including the farmer. Moreover:

- the farmer can't leave the wolf alone with the goat
- the farmer can't leave the goat alone with the cabbage How should he cross the river?

Getting a good representation is the key.
What are the allowable configurations?

- A configuration looks like (X, Y), where $X, Y \subseteq\{W, C, F, G\}, Y=\bar{X}$
- Can have X on the initial side of the river, Y on the other

$(W C F G, \emptyset)$	$(\emptyset, W C F G)$
$(W C F, G)$	$(G, W C F)$
$(W G F, C)$	$(C, W G F)$
$(C G F, W)$	$(F G, W C)$
$(W C, F G)$	$(W, C F G)$

- Disallowed configurations: $(W G, F C),(G C, F W),(F C, W G),(F W, G C)$
- Initial configuration: $(W C F G, \emptyset)$.

Use a graph to represent when we can get from one configuration to another.

Some Bureuacracy

- The final is on Thursday, May 8, 7-9:30 PM, in UP B17
- If you have a conflict and haven't told me, let me know now right away
- Also tell me the courses and professors involved (with emails)
- Also tell the other professors
- We may schedule a makeup; or perhaps the other course will.
- Office hours go on as usual during study week, but check the course web site soon.
- There may be small changes to accommodate the TA's exams
- There will be a review session

Coverage of Final

- everything covered by the first prelim - emphasis on more recent material
- Chapter 4: Fundamental Counting Methods
- Permutations and combinations
- Combinatorial identities
- Pascal's triangle
- Binomial Theorem (but not multinomial theorem)
- Balls and urns
- Inclusion-exclusion
- Pigeonhole principle
- Chapter 6: Probability:
- 6.1-6.5 (but not inverse binomial distribution)
- basic definitions: probability space, events
- conditional probability, independence, Bayes Thm.
- random variables
- uniform, binomial, and Poisson distributions
- expected value and variance
- Markov + Chebyshev inequalities
- Chapter 7: Logic:
- 7.1-7.4, 7.6, 7.7; * ${ }^{\text {not* }} 7.5$
\circ translating from English to propositional (or firstorder) logic
- truth tables and axiomatic proofs
- algorithm verification
- first-order logic
- Chapter 3: Graphs and Teres
- basic terminology: digraph, dag, degree, multigraph, path, connected component, clique
- Eulerian and Hamiltonian paths
* algorithm for telling if graph has Eulerian path
- BFS and DFS
- bipartite graphs
- graph coloring and chromatic number
- topological sort
- graph isomorphism

Ten Powerful Ideas

- Counting: Count without counting (combinatorics)
- Induction: Recognize it in all its guises.
- Exemplification: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.
- One possible way: represent it as a graph
- Modularity: Decompose a complex problem into simpler subproblems.
- Representation: Understand the relationships between different possible representations of the same information or idea.
- Graphs vs. matrices vs. relations
- Refinement: The best solutions come from a process of repeatedly refining and inventing alternative solutions.
- Toolbox: Build up your vocabulary of abstract structures.
- Optimization: Understand which improvements are worth it.
- Probabilistic methods: Flipping a coin can be surprisingly helpful!

Connections: Random Graphs

Suppose we have a random graph with n vertices. How likely is it to be connected?

- What is a random graph?
- If it has n vertices, there are $C(n, 2)$ possible edges, and $2^{C(n, 2)}$ possible graphs. What fraction of them is connected?
- One way of thinking about this. Build a graph using a random process, that puts each edge in with probability $1 / 2$.
- Given three vertices a, b, and c, what's the probability that there is an edge between a and b and between b and c ? $1 / 4$
- What is the probability that there is no path of length 2 between a and c ? $(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between a and c ? $1-(3 / 4)^{n-2}$
- What is the probability that there is a path of length 2 between a and every other vertex? > $\left(1-(3 / 4)^{n-2}\right)^{n-1}$

Now use the binomial theorem to compute $\left(1-(3 / 4)^{n-2}\right)^{n-1}$

$$
\left(1-(3 / 4)^{n-2}\right)^{n-1}
$$

$=1-(n-1)(3 / 4)^{n-2}+C(n-1,2)(3 / 4)^{2(n-2)}+\cdots$
For sufficiently large n, this will be (just about) 1 .
Bottom line: If n is large, then it is almost certain that a random graph will be connected.
Theorem: [Fagin, 1976] If P is any property expressible in first-order logic, it is either true in almost all graphs, or false in almost all graphs.
This is called a 0-1 law.

Connection: First-order Logic

Suppose you wanted to query a database. How do you do it?

Modern database query language date back to SQL (structured query language), and are all based on first-order logic.

- The idea goes back to Ted Codd, who invented the notion of relational databases.

Suppose you're a travel agent and want to query the airline database about whether there are flights from Ithaca to Santa Fe.

- How are cities and flights between them represented?
- How do we form this query?

You're actually asking whether there is a path from Ithaca to Santa Fe in the graph.

- This fact cannot be expressed in first-order logic!

