
Breadth-First Search

Input G(V, E) [a connected graph]
v [start vertex]

Algorithm Breadth-First Search

visit v
V ′ ← {v} [V ′ is the vertices already visited]
Put v on Q [Q is a queue]
repeat while Q 6= ∅

u← head(Q) [head(Q) is the first item on Q]
for w ∈ A(u) [A(u) = {w|{u,w} ∈ E}]

if w /∈ V ′

then visit w
Put w on Q
V ′ ← V ′ ∪ {w}

endif

endfor

Delete u from Q

The BFS algorithm basically finds a tree embedded in the
graph.

• This is called the BFS search tree

1

BFS and Shortest Length Paths

If all edges have equal length, we can extend this algo-
rithm to find the shortest path length from v to any other
vertex:

• Store the path length with each node when you add
it.

• Length(v) = 0.

• Length(w) = Length(u) + 1

With a little more work, can actually output the shortest
path from u to v.

• This is an example of how BFS and DFS arise unex-
pectedly in a number of applications.

◦We’ll see a few more

2

Depth-First Search

Input G(V, E) [a connected graph]
v [start vertex]

Algorithm Depth-First Search

visit v
V ′ ← {v} [V ′ is the vertices already visited]
Put v on S [S is a stack]
u← v
repeat while S 6= ∅
if A(u)− V ′ 6= ∅
then Choose w ∈ A(u)− V ′

visit w
V ′ = V ′ ∪ {w}
Put w on stack
u← w

else u← top(S) [Pop the stack]
endif

endrepeat

DFS uses backtracking

• Go as far as you can until you get stuck

• Then go back to the first point you had an untried
choice

3

Spanning Trees

A spanning tree of a connected graph G(V, E) is a con-
nected acyclic subgraph of G, which includes all the ver-
tices in V and only (some) edges from E.

Think of a spanning tree as a “backbone”; a minimal set
of edges that will let you get everywhere in a graph.

• Technically, a spanning tree isn’t a tree, because it
isn’t directed.

The BFS search tree and the DFS search tree are both
spanning trees.

• In the text, they give algorithms to produce minimum
weight spanning trees

• That’s done in CS 482, so we won’t do it here.

4

Graph Coloring

How many colors do you need to color the vertices of
a graph so that no two adjacent vertices have the same
color?

• Application: scheduling

◦ Vertices of the graph are courses

◦ Two courses taught by same prof are joined by
edge

◦ Colors are possible times class can be taught.

Lots of similar applications:

• E.g. assigning wavelengths to cell phone conversations
to avoid interference.

◦ Vertices are conversations

◦ Edges between “nearby” conversations

◦ Colors are wavelengths.

• Scheduling final exams

◦ Vertices are courses

◦ Edges between courses with overlapping enrollment

◦ Colors are exam times.

5

Chromatic Number

The chromatic number of a graph G, written χ(G), is
the smallest number of colors needed to color it so that
no two adjacent vertices have the same color.

Examples:

A graph G is k-colorable if k ≥ χ(G).

6

Determining χ(G)

Some observations:

• If G is a complete graph with n vertices, χ(G) = n

• If G has a clique of size k, then χ(G) ≥ k.

◦ Let c(G) be the clique number of G: the size of
the largest clique in G. Then

χ(G) ≥ c(G)

• If ∆(G) is the maximum degree of any vertex, then

χ(G) ≤ ∆(G) + 1 :

◦ Color G one vertex at a time; color each vertex
with the “smallest” color not used for a colored
vertex adjacent to it.

How hard is it to determine if χ(G) ≤ k?

• It’s NP complete, just like

◦ determining if c(G) ≥ k

◦ determining if G has a Hamiltonian path

◦ determining if a propositional formula is satisfiable

Can guess and verify.

7

Bipartite Graphs

A graph G(V, E) is bipartite if we can partition V into
disjoint sets V1 and V2 such that all the edges in E joins
a vertex in V1 to one in V2.

• A graph is bipartite iff it is 2-colorable

• Everything in V1 gets one color, everything in V2 gets
the other color.

Example: Suppose we want to represent the “is or has
been married to” relation on people. Can partition the
set V of people into males (V1) and females (V2). Edges
join two people who are or have been married.

8

Characterizing Bipartite Graphs

Theorem: G is bipartite iff G has no odd-length cycles.

Proof: Suppose that G is bipartite, and it has edges only
between V1 and V2. Suppose, to get a contradiction, that
(x0, x1, . . . , x2k, x0) is an odd-length cycle. If x0 ∈ V1,
then x2 is in V1. An easy induction argument shows that
x2i ∈ V1 and x2i+1 ∈ V2 for 0 = 1, . . . , k. But then
the edge between x2k and x0 means that there is an edge
between two nodes in V1; this is a contradiction.

• Get a similar contradiction if x0 ∈ V2.

Conversely, suppose G(V, E) has no odd-length cycles.

• Partition the vertices in V into two sets as follows:

◦ Start at an arbitrary vertex x0; put it in V0.

◦ Put all the vertices one step from x0 into V1

◦ Put all the vertices two steps from x0 into V0;

◦ . . .

This construction works if G is connected and has no
odd-length cycles.

•What if G isn’t connected?

This construction also gives a polynomial-time algorithm
for checking if a graph is bipartite.

9

The Four-Color Theorem

Can a map be colored with four colors, so that no coun-
tries with common borders have the same color?

• This is an instance of graph coloring

◦ The vertices are countries

◦ Two vertices are joined by an edge if the countries
they represent have a common border

A planar graph is one where all the edges can be drawn
on a plane (piece of paper) without any edges crossing.

• The graph of a map is planar

Graphs that are planar and ones that aren’t:

Four-Color Theorem: Every map can be colored us-
ing at most four colors so that no two countries with a
common boundary have the same color.

• Equivalently: every planar graph is four-colorable

10

Four-Color Theorem: History

• First conjectured by in 1852

• Five-colorability was long known

• “Proof” given in 1879; proof shown wrong in 1891

• Proved by Appel and Haken in 1976

◦ 140 journal pages + 100 hours of computer time

◦ They reduced it to 1936 cases, which they checked
by computer

• Proof simplified in 1996 by Robertson, Sanders, Sey-
mour, and Thomas

◦ But even their proof requires computer checking

◦ They also gave an O(n2) algorithm for four color-
ing a planar graph

• Proof checked by Coq theorem prover (Werner and
Gonthier) in 2004

◦ So you don’t have to trust the proof, just the the-
orem prover

Note that the theorem doesn’t apply to countries with
non-contiguous regions (like U.S. and Alaska).

11

Topological Sorting

[NOT IN TEXT]

If G(V, E) is a dag : directed acyclic graph, then a topo-

logical sort of G is a total ordering ≺ of the vertices in
V such that if (v, v′) ∈ E, then v ≺ v′.

• Application: suppose we want to schedule jobs, but
some jobs have to be done before others

◦ vertices on dag represent jobs

◦ edges describe precedence

◦ topological sort gives an acceptable schedule

12

Theorem: Every dag has at least one topological sort.

Proof: Two algorithms. Both depend on this fact:

• If V 6= ∅, some vertices in V have indegree 0.

◦ If all vertices in V have indegree > 0, then G has
a cycle: start at some v ∈ V , go to a parent v′ of
v, a parent v′′ of v′, etc.

∗ Eventually a node is repeated; this gives a cycle

Algorithm 1: Number the nodes of indegree 0 arbi-
trarily. Then remove them and the edges leading out of
them. You still have a dag. It has nodes of indegree 0.
Number them arbitrarily (but with a higer number than
the original set of nodes of indegree 0). Continue . . . This
gives a topological sort.

Algorithm 2: Add a “virtual node” v∗ to the graph,
and an edge from v∗ to all nodes with indegree 0

• Do a DFS starting at v∗. Output a node after you’ve
processed all the children of that node.

◦ Note that you’ll output v∗ last

◦ If there’s an edge from u to v, you’ll output v
before u

• Reverse the order (so that v∗ is first) and drop v∗

That’s a topological sort.

• This can be done in time linear in |V | + |E|

13

Graph Isomorphism

When are two graphs that may look different when they’re
drawn, really the same?

Answer: G1(V1, E1) and G2(V2, E2) are isomorphic if
they have the same number of vertices (|V1| = |V2|) and
we can relabel the vertices in G2 so that the edge sets are
identical.

• Formally, G1 is isomorphic to G2 if there is a bi-
jection f : V1 → V2 such that {v, v′} ∈ E1 iff
({f(v), f(v′)} ∈ E2.

• Note this means that |E1| = |E2|

14

Checking for Graph Isomorphism

There are some obvious requirements for G1(V1, E1) and
G2(V2, E2) to be isomorphic:

• |V1| = |V2|

• |E1| = |E2|

• for each d, #(vertices in V1 with degree d) = #(ver-
tices in V1 with degree d)

Checking for isomorphism is in NP:

• Guess an isomorphism f and verify

•We believe it’s not in polynomial time and not NP
complete.

15

Game Trees

Trees are particularly useful for representing and analyz-
ing games.

Example Daisy (aka Nim):

• players alternate picking petals from a daisy.

• A player gets to pick 1 or 2 petals.

•Whoever picks the last one wins.

• There’s another version where whoever takes the last
one loses

◦ both get analyzed the same way

Here’s the game tree for 4-petal daisy:

16

A Fun Application of Graphs

A farmer is bringing a wolf, a cabbage, and a goat to mar-
ket. They need to cross a river in a boat which can accom-
modate only two things, including the farmer. Moreover:

• the farmer can’t leave the wolf alone with the goat

• the farmer can’t leave the goat alone with the cabbage

How should he cross the river?

17

Getting a good representation is the key.

What are the allowable configurations?

• A configuration looks like (X, Y), where
X,Y ⊆ {W, C, F,G}, Y = X

• Can have X on the initial side of the river, Y on the
other

(WCFG, ∅) (∅, WCFG)

(WCF, G) (G, WCF)

(WGF, C) (C,WGF)

(CGF,W) (FG, WC)

(WC, FG) (W, CFG)

• Disallowed configurations:
(WG, FC), (GC, FW), (FC,WG), (FW, GC)

• Initial configuration: (WCFG, ∅).

Use a graph to represent when we can get from one con-
figuration to another.

18

Some Bureuacracy

• The final is on Thursday, May 8, 7-9:30 PM, in UP
B17

• If you have a conflict and haven’t told me, let me know
now right away

◦ Also tell me the courses and professors involved
(with emails)

◦ Also tell the other professors

◦We may schedule a makeup; or perhaps the other
course will.

• Office hours go on as usual during study week, but
check the course web site soon.

◦ There may be small changes to accommodate the
TA’s exams

• There will be a review session

19

Coverage of Final

• everything covered by the first prelim

◦ emphasis on more recent material

• Chapter 4: Fundamental Counting Methods

◦ Permutations and combinations

◦ Combinatorial identities

◦ Pascal’s triangle

◦ Binomial Theorem (but not multinomial theorem)

◦ Balls and urns

◦ Inclusion-exclusion

◦ Pigeonhole principle

• Chapter 6: Probability:

◦ 6.1–6.5 (but not inverse binomial distribution)

◦ basic definitions: probability space, events

◦ conditional probability, independence, Bayes Thm.

◦ random variables

◦ uniform, binomial, and Poisson distributions

◦ expected value and variance

◦ Markov + Chebyshev inequalities

20

• Chapter 7: Logic:

◦ 7.1–7.4, 7.6, 7.7; *not* 7.5

◦ translating from English to propositional (or first-
order) logic

◦ truth tables and axiomatic proofs

◦ algorithm verification

◦ first-order logic

• Chapter 3: Graphs and Teres

◦ basic terminology: digraph, dag, degree, multi-
graph, path, connected component, clique

◦ Eulerian and Hamiltonian paths

∗ algorithm for telling if graph has Eulerian path

◦ BFS and DFS

◦ bipartite graphs

◦ graph coloring and chromatic number

◦ topological sort

◦ graph isomorphism

21

Ten Powerful Ideas

• Counting: Count without counting (combinatorics)

• Induction: Recognize it in all its guises.

• Exemplification: Find a sense in which you can
try out a problem or solution on small examples.

• Abstraction: Abstract away the inessential features
of a problem.

◦ One possible way: represent it as a graph

•Modularity: Decompose a complex problem into
simpler subproblems.

• Representation: Understand the relationships be-
tween different possible representations of the same
information or idea.

◦ Graphs vs. matrices vs. relations

• Refinement: The best solutions come from a pro-
cess of repeatedly refining and inventing alternative
solutions.

• Toolbox: Build up your vocabulary of abstract struc-
tures.

22

• Optimization: Understand which improvements are
worth it.

• Probabilistic methods: Flipping a coin can be
surprisingly helpful!

23

Connections: Random Graphs

Suppose we have a random graph with n vertices. How
likely is it to be connected?

•What is a random graph?

◦ If it has n vertices, there are C(n, 2) possible edges,
and 2C(n,2) possible graphs. What fraction of them
is connected?

◦ One way of thinking about this. Build a graph
using a random process, that puts each edge in
with probability 1/2.

• Given three vertices a, b, and c, what’s the probability
that there is an edge between a and b and between b
and c? 1/4

•What is the probability that there is no path of length
2 between a and c? (3/4)n−2

•What is the probability that there is a path of length
2 between a and c? 1− (3/4)n−2

•What is the probability that there is a path of length 2
between a and every other vertex? > (1−(3/4)n−2)n−1

24

Now use the binomial theorem to compute (1−(3/4)n−2)n−1

(1− (3/4)n−2)n−1

= 1− (n− 1)(3/4)n−2 + C(n− 1, 2)(3/4)2(n−2) + · · ·

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a
random graph will be connected.

Theorem: [Fagin, 1976] If P is any property express-
ible in first-order logic, it is either true in almost all
graphs, or false in almost all graphs.

This is called a 0-1 law.

25

Connection: First-order Logic

Suppose you wanted to query a database. How do you
do it?

Modern database query language date back to SQL (struc-
tured query language), and are all based on first-order
logic.

• The idea goes back to Ted Codd, who invented the
notion of relational databases.

Suppose you’re a travel agent and want to query the air-
line database about whether there are flights from Ithaca
to Santa Fe.

• How are cities and flights between them represented?

• How do we form this query?

You’re actually asking whether there is a path from Ithaca
to Santa Fe in the graph.

• This fact cannot be expressed in first-order logic!

26

