Breadth-First Search

Input $G(V, E)$	[a connected graph]
v	[start vertex]

Algorithm Breadth-First Search

visit v $V' \leftarrow \{v\}$ [V' is the vertices already visited] Put v on Q [Q is a queue] repeat while $Q \neq \emptyset$ $u \leftarrow head(Q)$ [head(Q) is the first item on Q] for $w \in A(u)$ [$A(u) = \{w | \{u, w\} \in E\}$] if $w \notin V'$ then visit wPut w on Q $V' \leftarrow V' \cup \{w\}$ endif endfor

Delete u from Q

The BFS algorithm basically finds a tree embedded in the graph.

1

• This is called the *BFS search tree*

BFS and Shortest Length Paths

If all edges have equal length, we can extend this algorithm to find the shortest path length from v to any other vertex:

- Store the path length with each node when you add it.
- Length(v) = 0.
- Length(w) =Length(u) + 1

With a little more work, can actually output the shortest path from u to v.

• This is an example of how BFS and DFS arise unexpectedly in a number of applications.

 \circ We'll see a few more

Depth-First Search

Input G(V, E)v [a connected graph] [start vertex]

Algorithm Depth-First Search

visit v $V' \leftarrow \{v\}$ [V' is the vertices already visited]Put v on S[S is a stack] $u \leftarrow v$ repeat while $S \neq \emptyset$ if $A(u) - V' \neq \emptyset$ **then** Choose $w \in A(u) - V'$ visit w $V' = V' \cup \{w\}$ Put w on stack $u \leftarrow w$ else $u \leftarrow top(S)$ [Pop the stack] endif endrepeat

DFS uses backtracking

- Go as far as you can until you get stuck
- Then go back to the first point you had an untried choice

Spanning Trees

2

A spanning tree of a connected graph G(V, E) is a connected acyclic subgraph of G, which includes all the vertices in V and only (some) edges from E.

Think of a spanning tree as a "backbone"; a minimal set of edges that will let you get everywhere in a graph.

• Technically, a spanning tree isn't a tree, because it isn't directed.

The BFS search tree and the DFS search tree are both spanning trees.

• In the text, they give algorithms to produce minimum weight spanning trees

4

• That's done in CS 482, so we won't do it here.

3

Graph Coloring

How many colors do you need to color the vertices of a graph so that no two adjacent vertices have the same color?

- Application: scheduling
 - Vertices of the graph are courses
 - Two courses taught by same prof are joined by edge
 - Colors are possible times class can be taught.

Lots of similar applications:

- E.g. assigning wavelengths to cell phone conversations to avoid interference.
 - Vertices are conversations
 - Edges between "nearby" conversations
 - \circ Colors are wavelengths.
- Scheduling final exams
 - \circ Vertices are courses
 - $\circ\,$ Edges between courses with overlapping enrollment
 - Colors are exam times.

5

Determining $\chi(G)$

Some observations:

- If G is a complete graph with n vertices, $\chi(G) = n$
- If G has a clique of size k, then $\chi(G) \ge k$.
 - Let c(G) be the *clique number* of G: the size of the largest clique in G. Then

 $\chi(G) \geq c(G)$

• If $\Delta(G)$ is the maximum degree of any vertex, then

$$\chi(G) \le \Delta(G) + 1:$$

• Color G one vertex at a time; color each vertex with the "smallest" color not used for a colored vertex adjacent to it.

How hard is it to determine if $\chi(G) \leq k$?

- It's NP complete, just like
 - \circ determining if $c(G) \ge k$
 - \circ determining if G has a Hamiltonian path
 - determining if a propositional formula is satisfiable

Can guess and verify.

The chromatic number of a graph G, written $\chi(G)$, is the smallest number of colors needed to color it so that no two adjacent vertices have the same color.

Examples:

A graph G is k-colorable if $k \ge \chi(G)$.

Bipartite Graphs

6

A graph G(V, E) is *bipartite* if we can partition V into disjoint sets V_1 and V_2 such that all the edges in E joins a vertex in V_1 to one in V_2 .

- A graph is bipartite iff it is 2-colorable
- Everything in V_1 gets one color, everything in V_2 gets the other color.

Example: Suppose we want to represent the "is or has been married to" relation on people. Can partition the set V of people into males (V_1) and females (V_2) . Edges join two people who are or have been married.

8

7

Chromatic Number

Characterizing Bipartite Graphs

Theorem: G is bipartite iff G has no odd-length cycles.

Proof: Suppose that G is bipartite, and it has edges only between V_1 and V_2 . Suppose, to get a contradiction, that $(x_0, x_1, \ldots, x_{2k}, x_0)$ is an odd-length cycle. If $x_0 \in V_1$, then x_2 is in V_1 . An easy induction argument shows that $x_{2i} \in V_1$ and $x_{2i+1} \in V_2$ for $0 = 1, \ldots, k$. But then the edge between x_{2k} and x_0 means that there is an edge between two nodes in V_1 ; this is a contradiction.

• Get a similar contradiction if $x_0 \in V_2$.

Conversely, suppose G(V, E) has no odd-length cycles.

- Partition the vertices in V into two sets as follows:
 - Start at an arbitrary vertex x_0 ; put it in V_0 .
 - \circ Put all the vertices one step from x_0 into V_1
 - Put all the vertices two steps from x_0 into V_0 ; • ...

This construction works if G is connected and has no odd-length cycles.

• What if G isn't connected?

This construction also gives a polynomial-time algorithm for checking if a graph is bipartite.

9

Four-Color Theorem: History

- First conjectured by in 1852
- Five-colorability was long known
- "Proof" given in 1879; proof shown wrong in 1891
- Proved by Appel and Haken in 1976
 - \circ 140 journal pages + 100 hours of computer time
 - They reduced it to 1936 cases, which they checked by computer
- Proof simplified in 1996 by Robertson, Sanders, Seymour, and Thomas
 - But even their proof requires computer checking
 - \circ They also gave an $O(n^2)$ algorithm for four coloring a planar graph
- Proof checked by Coq theorem prover (Werner and Gonthier) in 2004
 - So you don't have to trust the proof, just the theorem prover

Note that the theorem doesn't apply to countries with non-contiguous regions (like U.S. and Alaska).

The Four-Color Theorem

Can a map be colored with four colors, so that no countries with common borders have the same color?

- This is an instance of graph coloring
 - \circ The vertices are countries
 - Two vertices are joined by an edge if the countries they represent have a common border

A *planar graph* is one where all the edges can be drawn on a plane (piece of paper) without any edges crossing.

• The graph of a map is planar

Graphs that are planar and ones that aren't:

Four-Color Theorem: Every map can be colored using at most four colors so that no two countries with a common boundary have the same color.

• Equivalently: every planar graph is four-colorable

10

Topological Sorting

[NOT IN TEXT]

If G(V, E) is a dag: directed acyclic graph, then a topological sort of G is a total ordering \prec of the vertices in V such that if $(v, v') \in E$, then $v \prec v'$.

- Application: suppose we want to schedule jobs, but some jobs have to be done before others
 - vertices on dag represent jobs
 - edges describe precedence
 - topological sort gives an acceptable schedule

Theorem: Every dag has at least one topological sort. **Proof:** Two algorithms. Both depend on this fact:

- If $V \neq \emptyset$, some vertices in V have indegree 0.
 - If all vertices in V have indegree > 0, then G has a cycle: start at some $v \in V$, go to a parent v' of v, a parent v'' of v', etc.
 - * Eventually a node is repeated; this gives a cycle

Algorithm 1: Number the nodes of indegree 0 arbitrarily. Then remove them and the edges leading out of them. You still have a dag. It has nodes of indegree 0. Number them arbitrarily (but with a higer number than the original set of nodes of indegree 0). Continue... This gives a topological sort.

Algorithm 2: Add a "virtual node" v^* to the graph, and an edge from v^* to all nodes with indegree 0

- Do a DFS starting at v^* . Output a node after you've processed all the children of that node.
 - \circ Note that you'll output v^* last
 - \circ If there's an edge from u to v, you'll output v before u
- Reverse the order (so that v^* is first) and drop v^* That's a topological sort.
 - This can be done in time linear in |V| + |E|

13

Checking for Graph Isomorphism

There are some obvious requirements for $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ to be isomorphic:

- $|V_1| = |V_2|$
- $\bullet |E_1| = |E_2|$
- for each d, #(vertices in V_1 with degree d) = #(vertices in V_1 with degree d)

Checking for isomorphism is in NP:

- Guess an isomorphism f and verify
- We believe it's not in polynomial time and not NP complete.

Graph Isomorphism

When are two graphs that may look different when they're drawn, really the same?

Answer: $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ are *isomorphic* if they have the same number of vertices $(|V_1| = |V_2|)$ and we can relabel the vertices in G_2 so that the edge sets are identical.

- Formally, G_1 is isomorphic to G_2 if there is a bijection $f : V_1 \to V_2$ such that $\{v, v'\} \in E_1$ iff $(\{f(v), f(v')\} \in E_2$.
- Note this means that $|E_1| = |E_2|$

14

Game Trees

Trees are particularly useful for representing and analyzing games.

Example *Daisy* (aka *Nim*):

- players alternate picking petals from a daisy.
- A player gets to pick 1 or 2 petals.
- Whoever picks the last one wins.
- There's another version where whoever takes the last one loses

• both get analyzed the same way

Here's the game tree for 4-petal daisy:

A Fun Application of Graphs

A farmer is bringing a wolf, a cabbage, and a goat to market. They need to cross a river in a boat which can accommodate only two things, including the farmer. Moreover:

- the farmer can't leave the wolf alone with the goat
- the farmer can't leave the goat alone with the cabbage

How should he cross the river?

Getting a good representation is the key.

What are the allowable configurations?

- A configuration looks like (X, Y), where $X, Y \subseteq \{W, C, F, G\}, Y = \overline{X}$
- \bullet Can have X on the initial side of the river, Y on the other

$(WCFG, \emptyset)$	$(\emptyset, WCFG)$
(WCF,G)	(G,WCF)
(WGF, C)	(C, WGF)
(CGF, W)	(FG,WC)
(WC, FG)	(W, CFG)

- Disallowed configurations: (WG, FC), (GC, FW), (FC, WG), (FW, GC)
- Initial configuration: $(WCFG, \emptyset)$.

Use a graph to represent when we can get from one configuration to another.

18

Some Bureuacracy

17

- The final is on Thursday, May 8, 7-9:30 PM, in UP B17
- If you have a conflict and haven't told me, let me know now right away
 - Also tell me the courses and professors involved (with emails)
 - \circ Also tell the other professors
 - We may schedule a makeup; or perhaps the other course will.
- Office hours go on as usual during study week, but check the course web site soon.
 - There may be small changes to accommodate the TA's exams
- There will be a review session

Coverage of Final

- everything covered by the first prelim
 - emphasis on more recent material
- Chapter 4: Fundamental Counting Methods
 - Permutations and combinations
 - Combinatorial identities
 - Pascal's triangle
 - Binomial Theorem (but not multinomial theorem)
 - \circ Balls and urns
 - \circ Inclusion-exclusion
 - \circ Pigeonhole principle
- Chapter 6: Probability:
 - 6.1–6.5 (but not inverse binomial distribution)
 - o basic definitions: probability space, events
 - conditional probability, independence, Bayes Thm.
 - \circ random variables
 - o uniform, binomial, and Poisson distributions
 - expected value and variance
 - Markov + Chebyshev inequalities

- Chapter 7: Logic:
 - \circ 7.1–7.4, 7.6, 7.7; *not* 7.5
 - \circ translating from English to propositional (or first-order) logic
 - \circ truth tables and axiomatic proofs
 - algorithm verification
 - first-order logic
- Chapter 3: Graphs and Teres
 - basic terminology: digraph, dag, degree, multigraph, path, connected component, clique
 - Eulerian and Hamiltonian paths
 - * algorithm for telling if graph has Eulerian path
 - \circ BFS and DFS
 - bipartite graphs
 - \circ graph coloring and chromatic number
 - \circ topological sort
 - \circ graph isomorphism

21

- **Optimization**: Understand which improvements are worth it.
- **Probabilistic methods**: Flipping a coin can be surprisingly helpful!

Ten Powerful Ideas

- **Counting**: Count without counting (*combinatorics*)
- Induction: Recognize it in all its guises.
- **Exemplification**: Find a sense in which you can try out a problem or solution on small examples.
- Abstraction: Abstract away the inessential features of a problem.

• One possible way: represent it as a graph

- **Modularity**: Decompose a complex problem into simpler subproblems.
- **Representation**: Understand the relationships between different possible representations of the same information or idea.

• Graphs vs. matrices vs. relations

- **Refinement**: The best solutions come from a process of repeatedly refining and inventing alternative solutions.
- **Toolbox**: Build up your vocabulary of abstract structures.

22

Connections: Random Graphs

Suppose we have a random graph with n vertices. How likely is it to be connected?

- What is a *random* graph?
 - If it has *n* vertices, there are C(n, 2) possible edges, and $2^{C(n,2)}$ possible graphs. What fraction of them is connected?
 - One way of thinking about this. Build a graph using a random process, that puts each edge in with probability 1/2.
- Given three vertices a, b, and c, what's the probability that there is an edge between a and b and between band c? 1/4
- What is the probability that there is no path of length 2 between a and c? $(3/4)^{n-2}$
- What is the probability that there is a path of length 2 between a and c? $1 (3/4)^{n-2}$
- What is the probability that there is a path of length 2 between a and every other vertex? > $(1-(3/4)^{n-2})^{n-1}$

Now use the binomial theorem to compute $(1-(3/4)^{n-2})^{n-1}$

 $(1 - (3/4)^{n-2})^{n-1} = 1 - (n-1)(3/4)^{n-2} + C(n-1,2)(3/4)^{2(n-2)} + \cdots$

For sufficiently large n, this will be (just about) 1.

Bottom line: If n is large, then it is almost certain that a random graph will be connected.

Theorem: [Fagin, 1976] If P is any property expressible in first-order logic, it is either true in almost all graphs, or false in almost all graphs.

25

This is called a 0-1 law.

Connection: First-order Logic

Suppose you wanted to query a database. How do you do it?

Modern database query language date back to SQL (structured query language), and are all based on first-order logic.

• The idea goes back to Ted Codd, who invented the notion of relational databases.

Suppose you're a travel agent and want to query the airline database about whether there are flights from Ithaca to Santa Fe.

- How are cities and flights between them represented?
- How do we form this query?

You're actually asking whether there is a path from Ithaca to Santa Fe in the graph.

• This fact cannot be expressed in first-order logic!

26