Syntax of First-Order Logic

We have:
e constant symbols: Alice, Bob
e variables: x,vy, z, . ..
e predicate symbols of each arity: P, Q, R, ...

o A wnary predicate symbol takes one argument:
P(Alice), Q(z)

o A binary predicate symbol takes two arguments:
Loves(Bob, Alice), Taller(Alice, Bob).

An atomic expression is a predicate symbol together
with the appropriate number of arguments.

e Atomic expressions act like primitive propositions in
propositional logic

o we can apply A, V, = to them

o we can also quantify the variables that appear in
them

Typical formula:
Vady(P(z,y) = 32Q(z, 2))

Semantics of First-Order Logic

Assume we have some domain D.
e The domain could be finite:
0{1,2,3,4,5}
o the people in this room
e The domain could be infinite
oN, R, ...

A statement like V2 P(z) means that P(d) is true for each
d in the domain.

e If the domain is N, then VaxP(x) is equivalent to
PO)APQ)APR2)A ...
Similarly, 3z P(x) means that P(d) is true for some d in
the domain.
e [f the domain is NV, then 3z P(x) is equivalent to
PO)VP1)VP2) V...

Is Jz(2? = 2) true?
Yes if the domain is R; no if the domain is V.
How about VaVy((z < y) = Jz(z < z < y))?

2

First-Order Logic: Formal Semantics

How do we decide if a first-order formula is true? Need:
e a domain D (what are you quantifying over)
e an interpretation I that interprets the constants and
predicate symbols:
o for each constant symbol ¢, I(c) € D
* Which domain element is Alice?
o for each unary predicate P, I(P) is a predicate on
domain D
* formally, I(P)(d) € {true,false} for each d € D
* Is Alice Tall? How about Bob?
o for each binary predicate @, I(Q) is a predicate on
D x D:
 formally, I(Q)(dy,dy) € {true(false} for each
dy,dy € D
* Is Alice taller than Bob?

e a valuation V associating with each variable x an el-
ement V(z) € D.

o To figure out if P(z) is true, you need to know
what x is.

Now we can define whether a formula A is true, given a
domain D, an interpretation I, and a valuation V| writ-
ten
(I,D,V) A
e Read this from right to left, like Hebrew: A is true at
(F) (I,D,V)

The definition is by induction:
(I,D,V) = P(x) if I(P)(V(x)) = true
(I,D,V) |= P(c) if I(P)(I(c))) = true
(I,D,V) EVzAif (I,D,V') = A for all valuations V'
that agree with V' except possibly on x

o V'(y)=V(y) forally #z

e V'(z) can be arbitrary

(I,D,V) | 3zA it (I,D, V') = A for some valuation
V' that agrees with V' except possibly on x.

Translating from English to
First-Order Logic

All men are mortal
Socrates is a man
Therefore Socrates is mortal

There is two unary predicates: Mortal and Man
There is one constant: Socrates
The domain is the set of all people

Va(Man(z) = Mortal(x))
Man(Socrates)

Mortal(Socrates)

More on Quantifiers

VaVyP(z,y) is equivalent to VyVz P(z,y)
e P is true for every choice of x and y
Similarly Jx3yP(z,y) is equivalent to JyIzP(x, y)
e P is true for some choice of (z,y).
What about Va3y P(x, y)? Is it equivalent to yVz P(x, y)?

e Suppose the domain is the natural numbers. Com-
pare:

o Vady(y = x)
o IyVa(y =)
In general, YWV Pz, y) = VaIyP(z, y) is logically valid.
e A logically valid formula in first-order logic is the ana-
logue of a tautology in propositional logic.
e A formula is logically valid if it’s true in every domain
and for every interpretation of the predicate symbols.

More valid formulas involving quantifiers:
e VuP(x) < Jx—P(z)
e Replacing P by =P, we get:
—Vz-P(z) < Jz-—P(x)

e Therefore
—Vz-P(x) < JzP(x)

e Similarly, we have
—JzP(z) & Va—P(x)
—-Jdz—P(z) < Ve P(x)

Bound and Free Variables

Vi(i2 > 4) is equivalent to V5 (5% > 75):

e the ¢ and j are bound variables, just like the ¢, 7 in

LU
> 1% or
i=1

s 5
J=1

What about J3i(i* = j):

e the 7 is bound by 3i; the j is free. Its value is uncon-
strained.

e if the domain is the natural numbers, the truth of this
formula depends on the value of j.

Axiomatizing First-Order Logic

Just as in propositional logic, there are axioms and rules
of inference that provide a sound and complete axioma-
tization for first-order logic, independent of the domain.

A typical axiom:

o Vz(P(z) = Q(x)) = (VxP(x) = VzQ(z)).
A typical rule of inference is Universal Generalization:
()

Vap(z)

Godel proved completeness of this axiom system in 1930.

Axiomatizing Arithmetic

Suppose we restrict the domain to the natural numbers,
and allow only the standard symbols of arithmetic (+, X,
=, >, 0, 1). Typical true formulas include:

o Vady(x x y = 1)
eVidy(r=y+yVr=y+y+1)
Let Prime(x) be an abbreviation for
VpVz((z =y x2) = ((y=1)V(y =2)))
e Prime(z) is true if x is prime
What does the following formula say:

eV Tyly >1Az=y+y) =
321329 Prime(z1) A Prime(z9) Ax = 21 + 29))

e This is Goldbach’s conjecture: every even number
other than 2 is the sum of two primes.

o Is it true? We don’t know.

Is there a nice (technically: recursive, so that a program
can check whether a formula is an axiom) sound and com-
plete axiomatization for arithmetic?

e GGadel’s Incompleteness Theorem: NO!

10

Logic: The Big Picture

A typical logic is described in terms of
e syntaxr: what are the legitimate formulas

e semantics: under what circumstances is a formula
true

e proof theory/ aziomatization: rules for proving a
formula true Truth and provability are quite different.

e What is provable depends on the axioms and inference
rules you use

e Provability is a mechanical, turn-the-crank process

e What is true depends on the semantics

Tautologies and Valid Arguments

When is an argument

Ay
A

Ay

B
valid?

e When the truth of the premises imply the truth of the
conclusion

How do you check if an argument is valid?

e Method 1: Take an arbitrary truth assignment v.
Show that if Ay,..., A, are true under v (v = Ay,
...v = A,) then B is true under v.

e Method 2: Show that AjA. . .AA,, = B isatautology
(essentially the same as Method 1)

o true for every truth assignment

e Method 3: Try to prove Aj A ... AN A, = B using a
sound axiomatization

Graphs and Trees

Graphs and trees come up everywhere.
e We can view the internet as a graph (in many ways)
o who is connected to whom
e Web search views web pages as a graph
o Who points to whom
e Niche graphs (Ecology):

o The vertices are species

o Two vertices are connected by an edge if they com-
pete (use the same food resources, etc.)

Niche graphs give a visual representation of competi-
tiveness.

e Influence Graphs

o The vertices are people

o There is an edge from a to b if a influences b

Influence graphs give a visual representation of power
structure.

There are lots of other examples in all fields . ..

Terminology and Notation

A graph G is a pair (V, E), where F is a set of vertices
or nodes and F is a set of edges or branches; an edge is
a set {v,v'} of two not necessarily distinet vertices (i.e.,
v, 0" € V).

e We sometimes write G(V, E) instead of G
o If V =10, then £ = (), and G is called the null graph.

We usually represent a graph pictorially.

e A vertex with no edges incident to it is said to be
isolated

o If {v} € E (the book writes {v,v}), then there is a
loop at v

o G'(V', E) is a subgraph of G(V,E) it V! C V and
E'CE.

Directed Graphs

Note that {v,u} and {u, v} represent the same edge.
In a directed graph (digraph), the order matters. We

denote an edge as (v,v’) rather than {v,v'}. We can
identify an undirected graph with the directed graph that
has edges (v,v’) and (v/,v) for every edge {v,v'} in the
undirected graph.

Two vertices v and v’ are adjacent if there is an edge
between them, i.e., {v,v'} € E in the undirected case,
(v,v') € Eor (v/,v) € E in the directed case.

Representing Relations Graphically

Given a relation R on S x T, we can represent it by the
directed graph G(V, E), where

oV =5SUT and
o £={(s,t): (s,t) € R}

Example: Represent the < relation on {1,2,3,4} graph-
ically.

How does the graphical representation show that a graph
is

o reflexive?
e symmetric?

e transitive?

Multigraphs

In a multigraph, there may be several edges between two
vertices.

e There may be several roads between two towns.

e There may be several transformations that can change
you from one configuration to another

o This is particularly important in graphs where edges
are labeled

Formally, a multigraph G(V, E) consists of a set V' of
vertices and a multiset E of edges

e The same edge can be in more than once

In this course, all graphs are simple graphs (not multi-
graphs) unless explicitly stated otherwise.

e Most of the results generalize to multigraphs

Degree

In a directed graph G(V, E), the indegree of a vertex v
is the number of edges coming into it

e indegree(v) = [{v': (v, v) € E}|
The outdegree of v is the number of edges going out of
it:

e outdegree(v) = [{v': (v,v') € E}|

The degree of v, denoted deg(v), is the sum of the inde-
gree and outdegree.

For an undirected graph, it doesn’t make sense to talk
about indegree and outdegree. The degree of a vertex is
the sum of the edges incident to the vertex, except that
we double-count all self-loops.

e Why? Because things work out better that way

Theorem: Given a graph G(V, F),
2|E| = ¥ deg(v)
veV

Proof: For a directed graph: each edge contributes once
to the indegree of some vertex, and once to the outdegree
of some vertex. Thus |E| = sum of the indegrees = sum
of the outdegrees.

Same argument for an undirected graph without loops.
We need to double-count the loops to make this right in
general.

Handshaking Theorem

Theorem: The number of people who shake hands with
an odd number of people at a party must be even.

Proof: Construct a graph, whose vertices are people at
the party, with an edge between two people if they shake
hands. The number of people person p shakes hands with
is deg(p). Split the set of all people at the party into two
subsets:

o A = those that shake hands with an even number of
people

e B= those that shake hands with an odd number of
people

> deg(p) = ¥ deg(p) + ¥ deg(p)
P peEA pEB
e We know that =, deg(p) = 2| E| is even.

o v, deg(p) is even, because for each p € A, deg(p) is
even.

e Therefore, ©,cp deg(p) is even.

e Therefore |B| is even (because for each p € B, deg(p)
is odd, and if |B| were odd, then £,cpdeg(p) would
be odd).

Paths

Given a graph G(V, E).

e A path in G is a sequence of vertices (v, . . ., v,) such
that {v;, vi11} € E ((vi,v;41) in the directed case).

o If vy = v, the path is a cycle

e An Eulerian path/cycle is a path/cycle that traverses
every every edge in E exactly once

e A Hamiltonian path/cycle is a path/cycle that passes
through each vertex in V' exactly once.

e A graph with no cycles is said to be acyclic

Connectivity

e An undirected graph is connected if there is for all
vertices u, v, (u # v) there is a path from u to v.

e A digraph is strongly connected if for all vertices u,
v (u # v) there is a path from u to v and from v to
u.

o If a digraph is weakly connected if, for every pair u,
v, there is an edge from u to v or an edge from v to
u.

e A connected component of an (undirected) graph G
is a connected subgraph G’ which is not the subgraph
of any other connected subgraph of G.

Example: We want the graph describing the intercon-
nection network in a parallel computer:

e the vertices are processors

e there is an edge between two nodes if there is a direct
link between them.

o if links are one-way links, then the graph is directed

We typically want this graph to be connected.

22

Trees

A tree is a digraph such that
(a) with edge directions removed, it is connected and acyclic
(b) every vertex but one, the root, has indegree 1

(c) the root has indegree 0

Trees come up everywhere:
e when analyzing games

e representing family relationships

Complete Graphs and Cliques

e An undirected graph G(V, E) is complete if it has no
loops and for all vertices u v (u # v), {u,v} € E.

o How many edges are there in a complete graph
with n vertices?

A complete subgraph of a graph is called a clique

e The cliqgue number of G is the size of the largest
clique in G.

The Konigsberg Bridge Problem

This is a classic mathematical problem.

There were seven bridges across the river Pregel at Konigsberg.

Is it possible to take a walk in which each bridge is crossed
exactly once?

Euler solved this problem in 1736.
e Key insight: represent the problem graphically

Eulerian Paths

Recall that G(V, E) has an Eulerian path if it has a path
that goes through every edge exactly once. It has an
Eulerian cycle (or Eulerian circuit) if it has an Eulerian
path that starts and ends at the same vertex.

How can we tell if a graph has an Eulerian path/circuit?

What’s a necessary condition for a graph to have an Eu-
lerian circuit?

Count the edges going into and out of each vertex:
e Fach vertex must have even degree!

This condition turns out to be sufficient too.

Theorem: A connected (multi)graph has an Eulerian
cycle iff each vertex has even degree.

Proof: The necessity is clear: In the Eulerian cycle,
there must be an even number of edges that start or end
with any vertex.

To see the condition is sufficient, we provide an algorithm
for finding an Eulerian circuit in G(V, E).

First step: Follow your nose to construct a cycle.

Second step: Remove the edges in the cycle from G. Let
H be the subgraph that remains.

e cvery vertex in H has even degree

e H may not be connected; let Hy, ..., Hy be its con-
nected components.

Third step: Apply the algorithm recursively to Hy, . . ., Hy,

and then splice the pieces together.

Finding cycles

First, find an algorithm for finding a cycle:

Input: G(V, E) [a list of vertices and edges]

procedure Pathgrow(V ,E v)
[v is first vertex in cycle]
P [P is sequence of edges on cycle]
w— v [w is last vertex in P]
repeat until I(w) — P = ()
[I(w) is the set of edges incident on w]
Pick e € I(w) — P
w «— other end of e
P—P-e [append e to P]
endrepeat
return P
endpro

Claim: If every vertex in V' has even degree, then P will
be a cycle
e Loop invariant: In the graph G(V,E — P), if the
first vertex (v) and last vertex (w) in P are different,
they have odd degree; all the other vertices have even
degree.

Finding Eulerian Paths

Input: G(V, E) [a list of vertices and edges]

Algorithm ECycle:
procedure Euler(V' E' ')
Pathgrow(V'.E' v')
if P is not Eulerian,
delete the edges in P from E;
let Gl(‘/la El), . 7Gn(‘/n7 En) be
the resulting connected components
let v; be a vertex in V;
fori=1ton
Euler(V;, E;, v;)
Attach C to P at v;
endfor
C—P
return C'
endpro
v «— any vertex in V/

Euler(V ,E)

Corollary: A connected multigraph has an Eulerian
path (but not an Eulerian cycle) if it has exactly two
vertices of odd degree.

Which of these graphs have Eulerian paths:

Hamiltonian Paths

Recall that G(V, E') has a Hamiltonian path if it has a
path that goes through every vertex exactly once. It has
a Hamiltonian cycle (or Hamiltonian circuit) if it has a
Hamiltonian path that starts and ends at the same vertex.

There is no known easy characterization or algorithm for
checking if a graph has a Hamiltonian cycle/path.

Which of these graphs have a Hamiltonian cycle?

Searching Graphs

Suppose we want to process data associated with the ver-
tices of a graph. This means we need a systematic way of
searching the graph, so that we don’t miss any vertices.
There are two standard methods.

e Breadth-first search

e Depth-first search

It’s best to think of these on a tree:

Breadth-first search would visit the nodes in the following
order:

1,2,3,...,10
Depth-first search would visit the nodes in the following

order:
1,2,4,5,7,8,11,3,6,9, 10

