Expectation of geometric distribution

What is the probability that X is finite?
i fx(k) =52 -p) p
= pz}%@(l —p)’

~ Pi-(i=p)
=1

Can now compute E(X):

E(X) = S k- (1—p)" 'p
=D [ 2(1—p) T IR, -p) T+
2a(1—p) ]
= pl(1/p)+ (L =p)/p+ (L —p)°/p+-]
= 1+(1=p)+A-p7+--
= 1/p
So, for example, if the success probability p is 1/3, it will
take on average 3 trials to get a success.

e All this computation for a result that was intuitively
clear all along ...



Variance and Standard Deviation

Expectation summarizes a lot of information about a ran-
dom variable as a single number. But no single number
can tell it all.

Compare these two distributions:

e Distribution 1:
Pr(49) = Pr(51) = 1/4; Pr(50) = 1/2.

e Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much
less “dispersed” than the second. We want a measure of
dispersion.

e One measure of dispersion is how far things are from
the mean, on average.

Given a random variable X, (X (s) — E(X))? measures
how far the value of s is from the mean value (the expec-
tation) of X. Define the variance of X to be

Var(X) = B((X — B(X))?) = Sues Pr(s)(X(s) — B(X))?

The standard deviation of X is
ox = Var(X) = {Ses Pr(s)(X(s) — B(X))?
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Why not use | X (s) — E(X)| as the measure of distance
instead of variance?

e (X(s5)—FE(X))? turns out to have nicer mathematical
properties.

e In R" the distance between (xy, ..., x,)and (y1,...,Yn)
1S \/<5131 — y1)2 + e T (xn — yn>2

Example:

e 'The variance of distribution 1 is

1 1 1 1
251 — 5002 4+ (50 — 50)2 4 (49 — 50)2 —
4(5 50) +2(5O 50) +4( 9 — 50) 5

e 'The variance of distribution 2 is

1 1 1 5000
(100 — 50)* + —(50 — 50)2 + —(0 — 50)* = ——
S P+ 5 (50 = 50)° + (0= 50)° = =

Expectation and variance are two ways of compactly de-
scribing a distribution.

e They don’t completely describe the distribution
e But they're still useful!



Variance: Examples

Let X be Bernoulli, with probability p of success. Recall
that E(X) = p.

Var(X) :(O—p)Q-(l—p)Jr(l—p)Q'p

Theorem: Var(X) = E(X?) — E(X)*.
Proof:

E(X —E(X))?) =E(X?-2B(X)X + E(X)?)
= B(X?) - 2E(X)E(X)+ E(E(X)?)
= B(X?) —2BE(X)?>+ E(X)?
= B(X?) — B(X)?

Think of this as E((X — ¢)?), then substitute E(X) for
C.

Example: Suppose X is the outcome of a roll of a fair
die.

e Recall E(X) =7/2.
e E(X?) =174 +2° {+...+6°

o So Var(X) =% — (1)? = 3,



Markov’s Inequality

Theorem: Suppose X is a nonnegative random variable
and a > 0. Then

Example: It X 1S 3100’1/2, then

Pr(X > 100) = Pr(X > 2E(X)) < -

This is not a particularly useful estimate. In fact, Pr(X >
100) = 27100 ~ 10730,



Chebyshev’s Inequality

Theorem: If X is a random variable and 8 > 0, then
Pr(|X = E(X)| 2 forx) < .
Proof: Let Y = (X — E(X))*. Then
X — E(X)| > Box it Y > *Var(X).
Le.,
{s:1X(s) = E(X)| > fox} = {s:Y(s) > 3*Var(X)}.

In particular, the probabilities of these events are the
same:

Pr(|X — E(X)| > Box) = Pr(Y > 3*Var(X)).
Note that E(Y) = E[(X — E(X))?] = Var(X), so
Pr(Y > 3*Var(X)) = Pr(Y > B*E(Y)).

Since Y > 0, by Markov’s inequality
1
Pr(|X — BE(X)| > Box) = Pr(Y > B°E(Y)) < P

e Intuitively, the probability of a random variable being
k standard deviations from the mean is < 1/k*.
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Chebyshev’s Inequality: Example

Chebyshev’s inequality gives a lower bound on how well
is X concentrated about its mean.

e Suppose X 18 Byg 1/2 and we want a lower bound on
Pr(40 < X < 60).

e [/(X) =50 and
40 < X <60 iff | X —50| < 10

SO

Pr(40 < X < 60) = Pr(|X — 50| < 10)
— 1 — Pr(|X — 50| > 10).

Now
Pr(|X — 50| > 10) < YauX)
100-(1/2)?
100
_1
i
SO

I 3

'This is not too bad: the correct answer is ~ 0.9611.



CS Applications of Probability:
Primality Testing

Recall idea of primality testing:

e Choose b between 1 and n at random

e Apply an easily computable (deterministic) test T'(b, n)
such that

o T(b,n) =1 (for all b) if n is prime.

o There are lots of b’s for which T'(b,n) = 0 if n is
not prime.
 In fact, for the standard test T, for at least 1/3

of the b’s between 1 and n, T'(b,n) is false if n
1s composite

S0 here’s the algorithm:

Input n [number whose primality is to be checked]
Output Prime [Want Prime = 1 iff n is prime]
Algorithm Primality
for k£ from 1 to 100 do
Choose b at random between 1 and n
If T(b,n) =0 return Prime =0
endfor
return Prime = 1.



Probabilistic Primality Testing:
Analysis

If n is composite, what is the probability that algorithm
returns Prime = 17

o (2/3)10 < (2)® ~ 10718
e [ wouldn’t lose sleep over mistakes!

e if 107! is unacceptable, try 200 random choices.

How long will it take until we find a witness

e Eixpected number of steps is < 3

What is the probability that it takes k£ steps to find a
witness?

o (2/3)"1(1/3)

e ceometric distribution!

Bottom line: the algorithm is extremely fast and almost
certainly gives the right results.



Finding the Median

Given a list .S of n numbers, find the median.

e More general problem:
Sel(S, k)—find the kth largest number in list S

One way to do it: sort S, the find kth largest.

e Running time O(nlogn), since that’s how long it
takes to sort

Can we do better?

e Can do Sel(S, 1) (max) and Sel(S,n) (min) in time
O(n)
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A Randomized Algorithm for Sel(S, k)

Given S = {ay,...,a,} and k, choose m € {1,...,n}
at random:

e Split .S into two sets
o ST =Aa;:a; > any}
o ST ={a;:a; <ap}
e this can be done in time O(n)
o If |ST| > Kk, Sel(S, k) = Sel(ST, k)
o If |ST|=k—1, Sel(S, k) =ay,,
o If [ST| <k —1,Sel(S, k) =Sel(S™,k— |5 —1)

This is clearly correct and eventually terminates, since

|57 157 < [S]
e What’s the running time for median (k = [n/2]):
o Worst case O(n?)

x Always choose smallest element, so |S™| = 0,
St =15 -1
o Best case O(n): select kth largest right away

o What happens on average?
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Selection Algorithm: Running Time

Let T'(n) be the running time on a set of n elements:

e T'(n) is a random variable,

e We want to compute FE(T'(n))

Say that the algorithm is in phase j if it is currently
working on a set with between n(3/4)) and n(3/4)/*!
elements.

e Clearly the algorithm terminates after < [logs ;,(1/n)]
phases.

e Then you're working on a set with 1 element
e A split in phase j involves < n(3/4)’ comparisons,
What’s the expected length of phase 57

e [f an element between the 25th and 75th percentile is
chosen, we move from phase 7 to phase 7 + 1

e Thus, the average # of calls in phase 7 is 2, and each
call in phase j involves at most n(3/4)’ comparisons,
SO

lo n :
E(T(n)) < 203,21 (34 < sn
Bottom line: the expected running time is linear.

e Randomization can help!
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Hashing Revisited

Remember hash functions:

e We have a set S of n elements indexed by ids in a
large set U

e Want to store information for element s € S in loca-
tion A(s) in a “small” table (size ~ n)

o E.g., U consists of 10!V social security numbers

o S consists of 30,000 students;
o Want to use a table of size, say, 40,000.

e h is a “good” hash function if it minimizes collisions:
o don’t want h(s) = h(t) for too many elements t.

How do we find a good hash function?

e Sometimes taking h(s) = s mod n for some suitable
modulus n works

e Sometimes it doesn’t
Key idea:
e Naive choice: choose h(s) € {0,...,n—1} at random
e The good news: Pr(h(s) =h(t)) =1/n
e The bad news: how do you find item s in the table?
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Universal Sets of Hash Functions

Want to choose a hash function h from some set H.
e Each h € H maps U to {0,...,n—1}
A set ‘H of hash functions is universal if:
1. For all u #4 v € U:
Pr({h € H : h(u) = h(v)}) = 1/n.

e The probability that two ids hash to the same thing
is 1/n

e [Exactly as if you'd picked the hash function com-
pletely at random

2. BEach h € H can be compactly represented; given
h € H and u € U, we can compute h(u) efficiently.

e Otherwise it’s too hard to deal with A in practice
Why we care: For u € U and S C U, let
Xus(h)=[{v#ue S:h(v)=h(u)}

e X, s(h) counts the number of collisions with w and
an element in S for hash function h.

e X, s 1s a random variable on H!

We will show that E (X, ) = |S]|/n
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Theorem: If H is universal and |S| < n, then E(X, s) < 1.
Proof: Let X,,(h) = 1if h(u) = h(v); 0 otherwise.
e By Property 1 of universal sets of hash function,
E(Xw)=Pr({h € H: h(u) = h(v)} = 1/n.
® X5 = 2ty vesXuw, SO
E(Xus5) = Yotuves BE(Xuw) < |S|/n=1
What this says:

e If we pick a hash function at random fro a universal
set of hash functions, then the expected number of
collisions is as small as we could expect.

e A random hash function from a universal class is guar-
anteed to be good, no matter how the keys are dis-
tributed
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Designing a Universal Set of Hash
Functions

The theorem shows that if we choose a hash function at
random from a universal set ‘H, then the expected number
of collisions with an arbitrary element w is 1.

e That motivates designing such a unversal set.

Here’s one way of doing it, given S and U':
e Let p be a prime, px~n = |S|, p > n.
o Can find p using primality testing
e Choose r such that p" > |U].
or ~log|U|/logn
o Let A={(a,...,a,):0<a; <p—1}
o|A|l =p" > |U|.
o Can identify elements of U with vectors in A
o Let H=1{hz:ae A}.

o If ¥ = (x1,...,2,) define

ha(Z) = (il Clz'il%') (mod p).

1=
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Theorem: H is universal.

Proof: Clearly there’s a compact representation for the
elements of H — we can identify H with A.

Computing hz(Z) is also easy: it’s the inner product of @
and x, mod p.
Now suppose that & # .
e For simplicity suppose that x1 # 4
e Must show that Pr({h € H : h(Z) = h(y)}) < 1/n.
o Iix a;for j #1

e For what choices of a; is hz(T) = ha(y)?
o Must have a1 (y1—21) = X q0i(x;—y;) (mod p)

o Since we've fixed as, . .., a,, the right-hand side is
just a fixed number, say M.

o There’s a unique aq that works:
ay = M(yy —x1)" (mod p)!

o The probability of choosing this ay is 1/p < 1/n.
o That’s true for every fixed choice of ao, ..., a,.

e Bottom line:
Pr({h € H: h(Z)=h(1)}) < 1/n.

This material is in the Kleinberg-Tardos book (reference
on web site).
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