
Expectation of geometric distribution

What is the probability that X is finite?

Σ∞
k=1fX(k) = Σ∞

k=1(1− p)k−1p

= pΣ∞
j=0(1− p)j

= p 1
1−(1−p)

= 1

Can now compute E(X):

E(X) = Σ∞
k=1k · (1− p)k−1p

= p
[
Σ∞

k=1(1− p)k−1 + Σ∞
k=2(1− p)k−1 +

Σ∞
k=3(1− p)k−1 + · · ·

]

= p[(1/p) + (1− p)/p + (1− p)2/p + · · ·]
= 1 + (1− p) + (1− p)2 + · · ·
= 1/p

So, for example, if the success probability p is 1/3, it will
take on average 3 trials to get a success.

• All this computation for a result that was intuitively
clear all along . . .

1



Variance and Standard Deviation

Expectation summarizes a lot of information about a ran-
dom variable as a single number. But no single number
can tell it all.

Compare these two distributions:

• Distribution 1:

Pr(49) = Pr(51) = 1/4; Pr(50) = 1/2.

• Distribution 2: Pr(0) = Pr(50) = Pr(100) = 1/3.

Both have the same expectation: 50. But the first is much
less “dispersed” than the second. We want a measure of
dispersion.

• One measure of dispersion is how far things are from
the mean, on average.

Given a random variable X , (X(s) − E(X))2 measures
how far the value of s is from the mean value (the expec-
tation) of X . Define the variance of X to be

Var(X) = E((X− E(X))2) = Σs∈S Pr(s)(X(s)− E(X))2

The standard deviation of X is

σX =
√
Var(X) =

√
Σs∈S Pr(s)(X(s)− E(X))2

2



Why not use |X(s)− E(X)| as the measure of distance
instead of variance?

• (X(s)−E(X))2 turns out to have nicer mathematical
properties.

• In Rn, the distance between (x1, . . . , xn) and (y1, . . . , yn)
is

√
(x1 − y1)2 + · · · + (xn − yn)2

Example:

• The variance of distribution 1 is

1

4
(51− 50)2 +

1

2
(50− 50)2 +

1

4
(49− 50)2 =

1

2

• The variance of distribution 2 is

1

3
(100− 50)2 +

1

3
(50− 50)2 +

1

3
(0− 50)2 =

5000

3

Expectation and variance are two ways of compactly de-
scribing a distribution.

• They don’t completely describe the distribution

• But they’re still useful!

3



Variance: Examples

Let X be Bernoulli, with probability p of success. Recall
that E(X) = p.

Var(X) = (0− p)2 · (1− p) + (1− p)2 · p
= p(1− p)[p + (1− p)]
= p(1− p)

Theorem: Var(X) = E(X2)− E(X)2.

Proof:

E((X − E(X))2) = E(X2 − 2E(X)X + E(X)2)
= E(X2)− 2E(X)E(X) + E(E(X)2)
= E(X2)− 2E(X)2 + E(X)2

= E(X2)− E(X)2

Think of this as E((X − c)2), then substitute E(X) for
c.

Example: Suppose X is the outcome of a roll of a fair
die.

• Recall E(X) = 7/2.

• E(X2) = 12 · 1
6 + 22 · 1

6 + . . . + 62 · 1
6 = 91

6

• So Var(X) = 91
6 − (7

2)
2 = 35

12.

4



Markov’s Inequality

Theorem: Suppose X is a nonnegative random variable
and α > 0. Then

Pr(X ≥ αE(X)) ≤ 1

α
.

Proof:

E(X) = Σxx · Pr(X = x)
≥ Σx≥αE(X)x · Pr(X = x)
≥ Σx≥αE(X)αE(X) · Pr(X = x)
= αE(X)Σx≥αE(X) Pr(X = x)
= αE(X) · Pr(X ≥ αE(X))

Example: If X is B100,1/2, then

Pr(X ≥ 100) = Pr(X ≥ 2E(X)) ≤ 1

2

This is not a particularly useful estimate. In fact, Pr(X ≥
100) = 2−100 ∼ 10−30.

5



Chebyshev’s Inequality

Theorem: If X is a random variable and β > 0, then

Pr(|X − E(X)| ≥ βσX) ≤ 1

β2
.

Proof: Let Y = (X − E(X))2. Then

|X − E(X)| ≥ βσX iff Y ≥ β2Var(X).

I.e.,

{s : |X(s)− E(X)| ≥ βσX} = {s : Y (s) ≥ β2Var(X)}.
In particular, the probabilities of these events are the
same:

Pr(|X − E(X)| ≥ βσX) = Pr(Y ≥ β2Var(X)).

Note that E(Y ) = E[(X − E(X))2] = Var(X), so

Pr(Y ≥ β2Var(X)) = Pr(Y ≥ β2E(Y)).

Since Y ≥ 0, by Markov’s inequality

Pr(|X − E(X)| ≥ βσX) = Pr(Y ≥ β2E(Y )) ≤ 1

β2
.

• Intuitively, the probability of a random variable being
k standard deviations from the mean is ≤ 1/k2.

6



Chebyshev’s Inequality: Example

Chebyshev’s inequality gives a lower bound on how well
is X concentrated about its mean.

• Suppose X is B100,1/2 and we want a lower bound on
Pr(40 < X < 60).

• E(X) = 50 and

40 < X < 60 iff |X − 50| < 10

so

Pr(40 < X < 60) = Pr(|X − 50| < 10)
= 1− Pr(|X − 50| ≥ 10).

Now
Pr(|X − 50| ≥ 10) ≤ Var(X)

102

= 100·(1/2)2

100
= 1

4.

So

Pr(40 < X < 60) ≥ 1− 1

4
=

3

4
.

This is not too bad: the correct answer is ∼ 0.9611.

7



CS Applications of Probability:
Primality Testing

Recall idea of primality testing:

• Choose b between 1 and n at random

• Apply an easily computable (deterministic) test T (b, n)
such that

◦ T (b, n) = 1 (for all b) if n is prime.

◦ There are lots of b’s for which T (b, n) = 0 if n is
not prime.

∗ In fact, for the standard test T , for at least 1/3
of the b’s between 1 and n, T (b, n) is false if n
is composite

So here’s the algorithm:

Input n [number whose primality is to be checked]
Output Prime [Want Prime = 1 iff n is prime]
Algorithm Primality

for k from 1 to 100 do
Choose b at random between 1 and n
If T (b, n) = 0 return Prime = 0

endfor
return Prime = 1.

8



Probabilistic Primality Testing:
Analysis

If n is composite, what is the probability that algorithm
returns Prime = 1?

• (2/3)100 < (.2)25 ≈ 10−18

• I wouldn’t lose sleep over mistakes!

• if 10−18 is unacceptable, try 200 random choices.

How long will it take until we find a witness

• Expected number of steps is ≤ 3

What is the probability that it takes k steps to find a
witness?

• (2/3)k−1(1/3)

• geometric distribution!

Bottom line: the algorithm is extremely fast and almost
certainly gives the right results.

9



Finding the Median

Given a list S of n numbers, find the median.

• More general problem:
Sel(S, k)—find the kth largest number in list S

One way to do it: sort S, the find kth largest.

• Running time O(n log n), since that’s how long it
takes to sort

Can we do better?

• Can do Sel(S, 1) (max) and Sel(S, n) (min) in time
O(n)

10



A Randomized Algorithm for Sel(S, k)

Given S = {a1, . . . , an} and k, choose m ∈ {1, . . . , n}
at random:

• Split S into two sets

◦ S+ = {aj : aj > am}
◦ S− = {aj : aj < am}

• this can be done in time O(n)

• If |S+| ≥ k, Sel(S, k) = Sel(S+, k)

• If |S+| = k − 1, Sel(S, k) = am

• If |S+| < k − 1, Sel(S, k) = Sel(S−, k − |S+| − 1)

This is clearly correct and eventually terminates, since
|S+|, |S−| < |S|
• What’s the running time for median (k = dn/2e):
◦ Worst case O(n2)

∗ Always choose smallest element, so |S−| = 0,
S+ = |S| − 1.

◦ Best case O(n): select kth largest right away

◦ What happens on average?

11



Selection Algorithm: Running Time

Let T (n) be the running time on a set of n elements:

• T (n) is a random variable,

• We want to compute E(T (n))

Say that the algorithm is in phase j if it is currently
working on a set with between n(3/4)j and n(3/4)j+1

elements.

• Clearly the algorithm terminates after≤ dlog3/4(1/n)e
phases.

• Then you’re working on a set with 1 element

• A split in phase j involves ≤ n(3/4)j comparisons.

What’s the expected length of phase j?

• If an element between the 25th and 75th percentile is
chosen, we move from phase j to phase j + 1

• Thus, the average # of calls in phase j is 2, and each
call in phase j involves at most n(3/4)j comparisons,
so

E(T (n)) ≤ 2nΣ
dlog3/4 ne
j=0 (3/4)j ≤ 8n

Bottom line: the expected running time is linear.

• Randomization can help!

12



Hashing Revisited

Remember hash functions:

• We have a set S of n elements indexed by ids in a
large set U

• Want to store information for element s ∈ S in loca-
tion h(s) in a “small” table (size ≈ n)

◦ E.g., U consists of 1010 social security numbers

◦ S consists of 30,000 students;

◦ Want to use a table of size, say, 40,000.

• h is a “good” hash function if it minimizes collisions :

◦ don’t want h(s) = h(t) for too many elements t.

How do we find a good hash function?

• Sometimes taking h(s) = s mod n for some suitable
modulus n works

• Sometimes it doesn’t

Key idea:

• Naive choice: choose h(s) ∈ {0, . . . , n−1} at random

• The good news: Pr(h(s) = h(t)) = 1/n

• The bad news: how do you find item s in the table?

13



Universal Sets of Hash Functions

Want to choose a hash function h from some set H.

• Each h ∈ H maps U to {0, . . . , n− 1}
A set H of hash functions is universal if:

1. For all u 6= v ∈ U :

Pr({h ∈ H : h(u) = h(v)}) = 1/n.

• The probability that two ids hash to the same thing
is 1/n

• Exactly as if you’d picked the hash function com-
pletely at random

2. Each h ∈ H can be compactly represented; given
h ∈ H and u ∈ U , we can compute h(u) efficiently.

• Otherwise it’s too hard to deal with h in practice

Why we care: For u ∈ U and S ⊆ U , let

Xu,S(h) = |{v 6= u ∈ S : h(v) = h(u)}|

• Xu,S(h) counts the number of collisions with u and
an element in S for hash function h.

• Xu,S is a random variable on H!

We will show that E(Xu,S) = |S|/n
14



Theorem: IfH is universal and |S| ≤ n, then E(Xu,S) ≤ 1.

Proof: Let Xuv(h) = 1 if h(u) = h(v); 0 otherwise.

• By Property 1 of universal sets of hash function,

E(Xuv) = Pr({h ∈ H : h(u) = h(v)} = 1/n.

• Xu,S = Σv 6=u, v∈SXuv, so
E(Xu,S) = Σv 6=u, v∈SE(Xuv) ≤ |S|/n = 1

What this says:

• If we pick a hash function at random fro a universal
set of hash functions, then the expected number of
collisions is as small as we could expect.

• A random hash function from a universal class is guar-
anteed to be good, no matter how the keys are dis-
tributed

15



Designing a Universal Set of Hash
Functions

The theorem shows that if we choose a hash function at
random from a universal setH, then the expected number
of collisions with an arbitrary element u is 1.

• That motivates designing such a unversal set.

Here’s one way of doing it, given S and U :

• Let p be a prime, p ≈ n = |S|, p > n.

◦ Can find p using primality testing

• Choose r such that pr > |U |.
◦ r ≈ log |U |/ log n

• Let A = {(a1, . . . , ar) : 0 ≤ ai ≤ p− 1}.
◦ |A| = pr > |U |.
◦ Can identify elements of U with vectors in A

• Let H = {h~a : ~a ∈ A}.
• If ~x = (x1, . . . , xr) define

h~a(~x) =
 r∑
i=1

aixi

 (mod p).

16



Theorem: H is universal.

Proof: Clearly there’s a compact representation for the
elements of H – we can identify H with A.

Computing h~a(~x) is also easy: it’s the inner product of ~a
and ~x, mod p.

Now suppose that ~x 6= ~y.

• For simplicity suppose that x1 6= y1

• Must show that Pr({h ∈ H : h(~x) = h(~y)}) ≤ 1/n.

• Fix aj for j 6= 1

• For what choices of a1 is h~a(~x) = h~a(~y)?

◦ Must have a1(y1−x1) ≡ Σj 6=1aj(xj−yj) (mod p)

◦ Since we’ve fixed a2, . . . , an, the right-hand side is
just a fixed number, say M .

◦ There’s a unique a1 that works:

a1 = M(y1 − x1)
−1 (mod p)!

◦ The probability of choosing this a1 is 1/p < 1/n.

◦ That’s true for every fixed choice of a2, . . . , ar.

• Bottom line:

Pr({h ∈ H : h(~x) = h(~y)}) ≤ 1/n.

This material is in the Kleinberg-Tardos book (reference
on web site).

17


