Expectation of geometric distribution

What is the probability that X is finite?

$$
\begin{aligned}
\sum_{k=1}^{\infty} f_{X}(k) & =\sum_{k=1}^{\infty}(1-p)^{k-1} p \\
& =p \sum_{j=0}^{\infty}(1-p)^{j} \\
& =p_{\overline{1-(1-p)}} \\
& =1
\end{aligned}
$$

Can now compute $E(X)$:

$$
\begin{aligned}
E(X)= & \sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} p \\
= & p\left[\sum_{k=1}^{\infty}(1-p)^{k-1}+\sum_{k=2}^{\infty}(1-p)^{k-1}+\right. \\
& \left.\quad \sum_{k=3}^{\infty}(1-p)^{k-1}+\cdots\right] \\
= & p\left[(1 / p)+(1-p) / p+(1-p)^{2} / p+\cdots\right] \\
= & 1+(1-p)+(1-p)^{2}+\cdots \\
= & 1 / p
\end{aligned}
$$

So, for example, if the success probability p is $1 / 3$, it will take on average 3 trials to get a success.

- All this computation for a result that was intuitively clear all along ...

Variance and Standard Deviation

Expectation summarizes a lot of information about a random variable as a single number. But no single number can tell it all.

Compare these two distributions:

- Distribution 1:

$$
\operatorname{Pr}(49)=\operatorname{Pr}(51)=1 / 4 ; \quad \operatorname{Pr}(50)=1 / 2
$$

- Distribution 2: $\operatorname{Pr}(0)=\operatorname{Pr}(50)=\operatorname{Pr}(100)=1 / 3$.

Both have the same expectation: 50. But the first is much less "dispersed" than the second. We want a measure of dispersion.

- One measure of dispersion is how far things are from the mean, on average.

Given a random variable $X,(X(s)-E(X))^{2}$ measures how far the value of s is from the mean value (the expectation) of X. Define the variance of X to be

$$
\operatorname{Var}(\mathrm{X})=\mathrm{E}\left((\mathrm{X}-\mathrm{E}(\mathrm{X}))^{2}\right)=\Sigma_{\mathrm{s} \in \mathrm{~S}} \operatorname{Pr}(\mathrm{~s})(\mathrm{X}(\mathrm{~s})-\mathrm{E}(\mathrm{X}))^{2}
$$

The standard deviation of X is

$$
\sigma_{X}=\sqrt{\operatorname{Var}(\mathrm{X})}=\sqrt{\Sigma_{s \in S} \operatorname{Pr}(s)(X(s)-E(X))^{2}}
$$

Why not use $|X(s)-E(X)|$ as the measure of distance instead of variance?

- $(X(s)-E(X))^{2}$ turns out to have nicer mathematical properties.
- In R^{n}, the distance between $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ is $\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}$

Example:

- The variance of distribution 1 is

$$
\frac{1}{4}(51-50)^{2}+\frac{1}{2}(50-50)^{2}+\frac{1}{4}(49-50)^{2}=\frac{1}{2}
$$

- The variance of distribution 2 is

$$
\frac{1}{3}(100-50)^{2}+\frac{1}{3}(50-50)^{2}+\frac{1}{3}(0-50)^{2}=\frac{5000}{3}
$$

Expectation and variance are two ways of compactly describing a distribution.

- They don't completely describe the distribution
- But they're still useful!

Variance: Examples

Let X be Bernoulli, with probability p of success. Recall that $E(X)=p$.

$$
\begin{aligned}
\operatorname{Var}(\mathrm{X}) & =(0-p)^{2} \cdot(1-p)+(1-p)^{2} \cdot p \\
& =p(1-p)[p+(1-p)] \\
& =p(1-p)
\end{aligned}
$$

Theorem: $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}$.

Proof:

$$
\begin{aligned}
E\left((X-E(X))^{2}\right) & =E\left(X^{2}-2 E(X) X+E(X)^{2}\right) \\
& =E\left(X^{2}\right)-2 E(X) E(X)+E\left(E(X)^{2}\right) \\
& =E\left(X^{2}\right)-2 E(X)^{2}+E(X)^{2} \\
& =E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

Think of this as $E\left((X-c)^{2}\right)$, then substitute $E(X)$ for c.

Example: Suppose X is the outcome of a roll of a fair die.

- Recall $E(X)=7 / 2$.
- $E\left(X^{2}\right)=1^{2} \cdot \frac{1}{6}+2^{2} \cdot \frac{1}{6}+\ldots+6^{2} \cdot \frac{1}{6}=\frac{91}{6}$
- So $\operatorname{Var}(\mathrm{X})=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}$.

Markov's Inequality

Theorem: Suppose X is a nonnegative random variable and $\alpha>0$. Then

$$
\operatorname{Pr}(X \geq \alpha E(X)) \leq \frac{1}{\alpha}
$$

Proof:

$$
\begin{aligned}
E(X) & =\Sigma_{x} x \cdot \operatorname{Pr}(X=x) \\
& \geq \Sigma_{x \geq \alpha E(X)} x \cdot \operatorname{Pr}(X=x) \\
& \geq \Sigma_{x \geq \alpha E(X)} \alpha E(X) \cdot \operatorname{Pr}(X=x) \\
& =\alpha E(X) \Sigma_{x \geq \alpha E(X)} \operatorname{Pr}(X=x) \\
& =\alpha E(X) \cdot \operatorname{Pr}(X \geq \alpha E(X))
\end{aligned}
$$

Example: If X is $B_{100,1 / 2}$, then

$$
\operatorname{Pr}(X \geq 100)=\operatorname{Pr}(X \geq 2 E(X)) \leq \frac{1}{2}
$$

This is not a particularly useful estimate. In fact, $\operatorname{Pr}(X \geq$ 100) $=2^{-100} \sim 10^{-30}$.

Chebyshev's Inequality

Theorem: If X is a random variable and $\beta>0$, then

$$
\operatorname{Pr}\left(|X-E(X)| \geq \beta \sigma_{X}\right) \leq \frac{1}{\beta^{2}}
$$

Proof: Let $Y=(X-E(X))^{2}$. Then

$$
|X-E(X)| \geq \beta \sigma_{X} \text { iff } Y \geq \beta^{2} \operatorname{Var}(\mathrm{X})
$$

I.e.,
$\left\{s:|X(s)-E(X)| \geq \beta \sigma_{X}\right\}=\left\{s: Y(s) \geq \beta^{2} \operatorname{Var}(\mathrm{X})\right\}$.
In particular, the probabilities of these events are the same:

$$
\operatorname{Pr}\left(|X-E(X)| \geq \beta \sigma_{X}\right)=\operatorname{Pr}\left(Y \geq \beta^{2} \operatorname{Var}(\mathrm{X})\right)
$$

Note that $E(Y)=E\left[(X-E(X))^{2}\right]=\operatorname{Var}(\mathrm{X})$, so

$$
\operatorname{Pr}\left(Y \geq \beta^{2} \operatorname{Var}(\mathrm{X})\right)=\operatorname{Pr}\left(\mathrm{Y} \geq \beta^{2} \mathrm{E}(\mathrm{Y})\right) .
$$

Since $Y \geq 0$, by Markov's inequality

$$
\operatorname{Pr}\left(|X-E(X)| \geq \beta \sigma_{X}\right)=\operatorname{Pr}\left(Y \geq \beta^{2} E(Y)\right) \leq \frac{1}{\beta^{2}}
$$

- Intuitively, the probability of a random variable being k standard deviations from the mean is $\leq 1 / k^{2}$.

Chebyshev's Inequality: Example

Chebyshev's inequality gives a lower bound on how well is X concentrated about its mean.

- Suppose X is $B_{100,1 / 2}$ and we want a lower bound on $\operatorname{Pr}(40<X<60)$.
- $E(X)=50$ and

$$
40<X<60 \text { iff }|X-50|<10
$$

So

$$
\begin{aligned}
\operatorname{Pr}(40<X<60) & =\operatorname{Pr}(|X-50|<10) \\
& =1-\operatorname{Pr}(|X-50| \geq 10)
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{Pr}(|X-50| \geq 10) & \leq \frac{\operatorname{Var}(\mathrm{X})}{10^{2}} \\
& =\frac{100 \cdot(1 / 2)^{2}}{100} \\
& =\frac{1}{4} .
\end{aligned}
$$

So

$$
\operatorname{Pr}(40<X<60) \geq 1-\frac{1}{4}=\frac{3}{4}
$$

This is not too bad: the correct answer is ~ 0.9611.

CS Applications of Probability: Primality Testing

Recall idea of primality testing:

- Choose b between 1 and n at random
- Apply an easily computable (deterministic) test $T(b, n)$ such that
- $T(b, n)=1$ (for all b) if n is prime.
- There are lots of b 's for which $T(b, n)=0$ if n is not prime.
* In fact, for the standard test T, for at least $1 / 3$ of the b 's between 1 and $n, T(b, n)$ is false if n is composite

So here's the algorithm:
Input n [number whose primality is to be checked]
Output Prime [Want Prime $=1$ iff n is prime]

Algorithm Primality

for k from 1 to 100 do
Choose b at random between 1 and n
If $T(b, n)=0$ return Prime $=0$
endfor
return Prime $=1$.

Probabilistic Primality Testing: Analysis

If n is composite, what is the probability that algorithm returns Prime $=1$?

- $(2 / 3)^{100}<(.2)^{25} \approx 10^{-18}$
- I wouldn't lose sleep over mistakes!
- if 10^{-18} is unacceptable, try 200 random choices.

How long will it take until we find a witness

- Expected number of steps is ≤ 3

What is the probability that it takes k steps to find a witness?

- $(2 / 3)^{k-1}(1 / 3)$
- geometric distribution!

Bottom line: the algorithm is extremely fast and almost certainly gives the right results.

Finding the Median

Given a list S of n numbers, find the median.

- More general problem: $\operatorname{Sel}(S, k)$-find the k th largest number in list S
One way to do it: sort S, the find k th largest.
- Running time $O(n \log n)$, since that's how long it takes to sort

Can we do better?

- Can do $\boldsymbol{\operatorname { S e l }}(S, 1)$ (max) and $\operatorname{Sel}(S, n)$ (min) in time $O(n)$

A Randomized Algorithm for $\operatorname{Sel}(S, k)$

Given $S=\left\{a_{1}, \ldots, a_{n}\right\}$ and k, choose $m \in\{1, \ldots, n\}$ at random:

- Split S into two sets

$$
\left.\begin{array}{rl}
\circ & S^{+}
\end{array}=\left\{a_{j}: a_{j}>a_{m}\right\}\right\}
$$

- this can be done in time $O(n)$
- If $\left|S^{+}\right| \geq k, \operatorname{Sel}(S, k)=\operatorname{Sel}\left(S^{+}, k\right)$
- If $\left|S^{+}\right|=k-1, \operatorname{Sel}(S, k)=a_{m}$
- If $\left|S^{+}\right|<k-1, \operatorname{Sel}(S, k)=\operatorname{Sel}\left(S^{-}, k-\left|S^{+}\right|-1\right)$

This is clearly correct and eventually terminates, since $\left|S^{+}\right|,\left|S^{-}\right|<|S|$

- What's the running time for median ($k=\lceil n / 2\rceil$):
- Worst case $O\left(n^{2}\right)$
* Always choose smallest element, so $\left|S^{-}\right|=0$, $S^{+}=|S|-1$.
- Best case $O(n)$: select k th largest right away - What happens on average?

Selection Algorithm: Running Time

Let $T(n)$ be the running time on a set of n elements:

- $T(n)$ is a random variable,
- We want to compute $E(T(n))$

Say that the algorithm is in phase j if it is currently working on a set with between $n(3 / 4)^{j}$ and $n(3 / 4)^{j+1}$ elements.

- Clearly the algorithm terminates after $\leq\left\lceil\log _{3 / 4}(1 / n)\right\rceil$ phases.
- Then you're working on a set with 1 element
- A split in phase j involves $\leq n(3 / 4)^{j}$ comparisons.

What's the expected length of phase j ?

- If an element between the 25th and 75th percentile is chosen, we move from phase j to phase $j+1$
- Thus, the average \# of calls in phase j is 2 , and each call in phase j involves at most $n(3 / 4)^{j}$ comparisons, so

$$
E(T(n)) \leq 2 n \Sigma_{j=0}^{\left[\log _{3 / 4} n\right]}(3 / 4)^{j} \leq 8 n
$$

Bottom line: the expected running time is linear.

- Randomization can help!

Hashing Revisited

Remember hash functions:

- We have a set S of n elements indexed by ids in a large set U
- Want to store information for element $s \in S$ in location $h(s)$ in a "small" table (size $\approx n$)
- E.g., U consists of 10^{10} social security numbers
- S consists of 30,000 students;
- Want to use a table of size, say, 40,000.
- h is a "good" hash function if it minimizes collisions:
- don't want $h(s)=h(t)$ for too many elements t.

How do we find a good hash function?

- Sometimes taking $h(s)=s \bmod n$ for some suitable modulus n works
- Sometimes it doesn't

Key idea:

- Naive choice: choose $h(s) \in\{0, \ldots, n-1\}$ at random
- The good news: $\operatorname{Pr}(h(s)=h(t))=1 / n$
- The bad news: how do you find item s in the table?

Universal Sets of Hash Functions

Want to choose a hash function h from some set \mathcal{H}.

- Each $h \in \mathcal{H}$ maps U to $\{0, \ldots, n-1\}$

A set \mathcal{H} of hash functions is universal if:

1. For all $u \neq v \in U$:

$$
\operatorname{Pr}(\{h \in \mathcal{H}: h(u)=h(v)\})=1 / n .
$$

- The probability that two ids hash to the same thing is $1 / n$
- Exactly as if you'd picked the hash function completely at random

2. Each $h \in \mathcal{H}$ can be compactly represented; given $h \in \mathcal{H}$ and $u \in U$, we can compute $h(u)$ efficiently.

- Otherwise it's too hard to deal with h in practice

Why we care: For $u \in U$ and $S \subseteq U$, let

$$
X_{u, S}(h)=|\{v \neq u \in S: h(v)=h(u)\}|
$$

- $X_{u, S}(h)$ counts the number of collisions with u and an element in S for hash function h.
- $X_{u, S}$ is a random variable on \mathcal{H} !

We will show that $E\left(X_{u, S}\right)=|S| / n$

Theorem: If \mathcal{H} is universal and $|S| \leq n$, then $E\left(X_{u, S}\right) \leq 1$. Proof: Let $X_{u v}(h)=1$ if $h(u)=h(v)$; 0 otherwise.

- By Property 1 of universal sets of hash function,

$$
E\left(X_{u v}\right)=\operatorname{Pr}(\{h \in \mathcal{H}: h(u)=h(v)\}=1 / n .
$$

- $X_{u, S}=\Sigma_{v \neq u, v \in S} X_{u v}$, so
$E\left(X_{u, S}\right)=\Sigma_{v \neq u, v \in S} E\left(X_{u v}\right) \leq|S| / n=1$
What this says:
- If we pick a hash function at random fro a universal set of hash functions, then the expected number of collisions is as small as we could expect.
- A random hash function from a universal class is guaranteed to be good, no matter how the keys are distributed

Designing a Universal Set of Hash Functions

The theorem shows that if we choose a hash function at random from a universal set \mathcal{H}, then the expected number of collisions with an arbitrary element u is 1 .

- That motivates designing such a unversal set.

Here's one way of doing it, given S and U :

- Let p be a prime, $p \approx n=|S|, p>n$.
- Can find p using primality testing
- Choose r such that $p^{r}>|U|$.
- $r \approx \log |U| / \log n$
- Let $\mathcal{A}=\left\{\left(a_{1}, \ldots, a_{r}\right): 0 \leq a_{i} \leq p-1\right\}$.
- $|\mathcal{A}|=p^{r}>|U|$.
- Can identify elements of U with vectors in \mathcal{A}
- Let $\mathcal{H}=\left\{h_{\vec{a}}: \vec{a} \in \mathcal{A}\right\}$.
- If $\vec{x}=\left(x_{1}, \ldots, x_{r}\right)$ define

$$
h_{\vec{a}}(\vec{x})=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \quad(\bmod p) .
$$

Theorem: \mathcal{H} is universal.

Proof: Clearly there's a compact representation for the elements of \mathcal{H} - we can identify \mathcal{H} with \mathcal{A}.
Computing $h_{\vec{a}}(\vec{x})$ is also easy: it's the inner product of \vec{a} and $\vec{x}, \bmod p$.

Now suppose that $\vec{x} \neq \vec{y}$.

- For simplicity suppose that $x_{1} \neq y_{1}$
- Must show that $\operatorname{Pr}(\{h \in \mathcal{H}: h(\vec{x})=h(\vec{y})\}) \leq 1 / n$.
- Fix a_{j} for $j \neq 1$
- For what choices of a_{1} is $h_{\vec{a}}(\vec{x})=h_{\vec{a}}(\vec{y})$?
- Must have $a_{1}\left(y_{1}-x_{1}\right) \equiv \Sigma_{j \neq 1} a_{j}\left(x_{j}-y_{j}\right) \quad(\bmod p)$
- Since we've fixed a_{2}, \ldots, a_{n}, the right-hand side is just a fixed number, say M.
- There's a unique a_{1} that works:

$$
a_{1}=M\left(y_{1}-x_{1}\right)^{-1} \quad(\bmod p)!
$$

- The probability of choosing this a_{1} is $1 / p<1 / n$.
- That's true for every fixed choice of a_{2}, \ldots, a_{r}.
- Bottom line:

$$
\operatorname{Pr}(\{h \in \mathcal{H}: h(\vec{x})=h(\vec{y})\}) \leq 1 / n .
$$

This material is in the Kleinberg-Tardos book (reference on web site).

