Averaging and Expectation

Suppose you toss a coin that’s biased towards heads (Pr(heads) =

2/3) twice. How many heads do you expect to get?

e In mathematics-speak:
What’s the expected number of heads?

What about if you toss the coin k times?

What's the average weight of the people in this class-
room?

e That’s easy: add the weights and divide by the num-
ber of people in the class.

But what about if I tell you I'm going to toss a coin to
determine which person in the class I'm going to choose;
if it lands heads, I'll choose someone at random from the
first aisle, and otherwise I'll choose someone at random
from the last aisle.

e What’s the expected weight?

Averaging makes sense if you use an equiprobable distri-
bution; in general, we need to talk about expectation.

Random Variables

To deal with expectation, we formally associate with ev-
ery element of a sample space a real number.

Definition: A random variable on sample space S'is a
function from S to the real numbers.

Example: Suppose we toss a biased coin (Pr(h) = 2/3)
twice. The sample space is:

e hh - Probability 4/9
e hit - Probability 2/9
e th - Probability 2/9
e tt - Probability 1/9

If we're interested in the number of heads, we would con-
sider a random variable #H that counts the number of
heads in each sequence:

HH(hh) =2 #H(ht) = #H(th) = 1; #H(tt) =0

Example: If we're interested in weights of people in the
class, the sample space is people in the class, and we could
have a random variable that associates with each person
his or her weight.

Probability Distributions

If X is a random variable on sample space S, then the
probability that X takes on the value ¢ is

Pr(X=c¢)=Pr({se S| X(s)=c})
Similarly,
Pr(X <c¢)=Pr({s €S| X(s) <c}.
This makes sense since the range of X is the real numbers.
Example: In the coin example,
Pr(#H =2)=4/9 and Pr(#H <1)=5/9
Given a probability measure Pr on a sample space S and

a random variable X, the probability distribution asso-
clated with X is fx(x) = Pr(X = z).

e fx is a probability measure on the real numbers.

The cumulative distribution associated with X is
Fx(z) =Pr(X < x).

An Example With Dice

Suppose S is the sample space corresponding to tossing
a pair of fair dice: {(i,7) | 1 <14,7 <6}.

Let X be the random variable that gives the sum:
o« X(i,j) =i+

Fx(2) = Pr(X = 2) = Pr({(1,1)}) = 136

Jx(3) = Pr(X =3) = Pr({(1,2), (2,1)}) = 2/36

fX(7) =Pr(X =7)=Pr({(1,6),(2,5),...,(6,1)}) = 6/36

}X(12) = Pr(X =12) = Pr({(6,6)}) = 1/36

Can similarly compute the cumulative distribution:
Fx(2) = fx(2) = 1/36
Fx(3) = fx(2) + fx(3) = 3/36

Fy(12) =1




The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distri-
bution. If S = {x1,...,2,}, where 1 < z3 < ... < xy,
then:

flzr) =1/n

F(zy) =k/n

The Binomial Distribution

Suppose there is an experiment with probability p of suc-
cess and thus probability ¢ = 1 — p of failure.

e For example, consider tossing a biased coin, where
Pr(h) = p. Getting “heads” is success, and getting
tails is failure.

Suppose the experiment is repeated independently n times.
e For example, the coin is tossed n times.

This is called a sequence of Bernoulli trials.

Key features:
e Only two possibilities: success or failure.

e Probability of success does not change from trial to
trial.

e The trials are independent.

What is the probability of & successes in n trials?

Suppose n = 5 and k = 3. How many sequences of 5 coin
tosses have exactly three heads?

e hhhit
e hhtht
o hhtth

(5, 3) such sequences!
What is the probability of each one?

P’ —p)?
Therefore, probability is C'(5,3)p3(1 — p)2.

Let By, (k) be the probability of getting k successes in n
Bernoulli trials with probability p of success.

B“sp(k) =C(n, k)pk(l — p)nfk

Not surprisingly, B,, , is called the Binomal Distribution.

The Poisson Distribution

A large call center receives, on average, A calls/minute.

e What is the probability that exactly k calls come dur-
ing a given minute?

Understanding this probability is critical for staffing!
e Similar issues arise if a printer receives, on average A
jobs/minute, a site gets A hits/minute, ...
This is modelled well by the Poisson distribution with
parameter A:
A
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e~ is a normalization constant, since
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Deriving the Poisson

Poisson distribution = limit of binomial distributions.

Suppose at most one call arrives in each second.

e Since A calls come each minute, expect about A/60
each second.

e The probability that k calls come is By »/60(k)

This model doesn’t allow more than one call/second.
What’s so special about 607 Suppose we divide one
minute into n time segments.

e Probability of getting a call in each segment is A/n.

e Probability of getting & calls in a minute is

Biam(k)
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Now let n — oo:
e lim, o (1 — %)n =

n! 1

e lim, o (=1 (m>k =1

Conclusion: lim, o By, \/n(k) =
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New Distributions from Old

If X and Y are random variables on a sample space S,
sois X +Y, X +2Y, XY sin(X), etc.

For example,
o (X +Y)(s)=X(s)+Y(s).
e sin(X)(s) = sin(X(s))

Note sin(X) is a random variable: a function from the
sample space to the reals.

Some Examples

Example 1: A fair die is rolled. Let X denote the num-

ber that shows up. What is the probability distribution

of Y = X7

{s:Y(s)=k} ={s: X%s) =k}
={s:X(s) = —Vk}U{s: X(s) = Vk}.

Conclusion: fy (k) = fx(VE) + fx(—Vk).

So fy(1) = fy(4) = fy(9) = -+ fr(36) = 1/6.
Fr(k) = 0if k ¢ {1,4,9, 16,25, 36}.

Example 2: A coin is flipped. Let X be 1 if the coin
shows H and -1if T. Let Y = X2

elnthiscase Y =1, s0oPr(Y =1)=1.
Example 3: If two dice are rolled, let X be the number

that comes up on the first dice, and Y the number that
comes up on the second.

e Formally, X((4,7)) =1, Y((i,7)) = j.

The random variable X +Y is the total number showing.

Example 4: Suppose we toss a biased coin n times
(more generally, we perform n Bernoulli trials). Let X
describe the outcome of the kth coin toss: X, = 1 if the
kth coin toss is heads, and 0 otherwise.

How do we formalize this?

e What’s the sample space?

Notice that £}, X} describes the number of successes of
n Bernoulli trials.

o If the probability of a single success is p, then ¥}, X}
has distribution B,

o The binomial distribution is the sum of Bernoullis




Independent random variables

In a roll of two dice, let X and Y record the numbers on
the first and second die respectively.

e What can you say about the events X =3, Y =27
e What about X =4 and ¥V = 57

Definition: The random variables X and Y are inde-
pendent if for every x and y the events X =z and Y =y
are independent.

Example: X and Y above are independent.

Definition: The random variables X7, Xo,..., X, are
mutually independent if, for every x1,xy. .., z,

Pr(X; =xiN...NX, =x,) =Pr(Xy =) ... Pr(X, = z,)

Example: X}, the success indicators in n Bernoulli tri-
als, are independent.

Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the
converse may not be true:

Example 1: A ball is randomly drawn from an urn
containing 4 balls: one blue, one red, one green and one
multicolored (red + blue + green)

e Let X, X5 and X3 denote the indicators of the events
the ball has (some) blue, red and green respectively.
o Pr(X;=1)=1/2 fori=1,2,3
X1=0]|X, =1
X; and X5 independent: X5 =0 1/4 1/4
Xo=1 1/4 1/4
Similarly, X7 and X3 are independent; so are X, and Xj.
Are X7, X5 and X3 independent? No!
Pl"(Xl :1ﬂX2:1ﬂX3: 1) :1/4
Pl"(Xl = 1) PI“(XQ = 1) PT(X5 = 1) = 1/8
Example 2: Suppose X; and X5 are bits (0 or 1) chosen
uniformly at random; X3 = X; @ Xo.
e X1, X are independent, as are X1, X3 and Xy, X3

e But X7, Xy, and X3 are not mutually independent

o X; and X, together determine X3!
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The distribution of X +Y

Suppose X and Y are independent random variables whose
range is included in {0, 1, ...,n}. Fork € {0,1,...,2n},

(X+Y =k) = U (X =5)Nn(Y =k—j)).
Note that some of the events might be empty
e F.g. X =k is bound to be empty if & > n.
This is a disjoint union so

Pr(X+Y =k)
=Yk Pr(X=jNnY =k—j)
N o Pr(X =j4)Pr(Y =k —j) [by independence]

Example: The Sum of Binomials

Suppose X has distribution B, ,, Y has distribution B,), ,,
and X and Y are independent.

Pr(X + Y k)
= ] NY =k—j) [sum rule|
J)Pr(Y =k —j)  [independence]
n— J( > (1 )mfk+j
p>n+m k

_ (n-;m

= Bn+nz,p(k)

Thus, X + Y has distribution Bj4 .

An easier argument: Perform n+m Bernoulli trials. Let
X be the number of successes in the first n and let Y be
thg number of successes in the last m. X has distribution

B, ,, Y has distribution B,, ,, X and Y are independent,
and X +Y is the number of successes in all n + m trials,
and so has distribution By, p.




Expected Value

Suppose we toss a biased coin, with Pr(h) = 2/3. If the
coin lands heads, you get $1; if the coin lands tails, you
get $3. What are your expected winnings?

e 2/3 of the time you get $1;
1/3 of the time you get $3

e (2/3x1)+(1/3x3)=5/3

What’s a good way to think about this? We have a ran-
dom variable W (for winnings):

e W(h)=1
e W(t)=3
The expectation of W is

E(W) = Pr(h)W(h) + Pr(t)W (1)
=Pr(W=1)x1+Pr(W=3)x3

More generally, the ezpected value of random variable X
on sample space S is

E(X)=%,zPr(X =)

An equivalent definition:
E(X) =Y5esX(s) Pr(s)
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Example: What is the expected count when two dice
are rolled?

Let X be the count (the sum of the values on the two
dice):
E(X)
Y2 Pr(X =)
1 2 3 6 1
2q6 + By dgg o g 4+ 125
36
=7

Expectation of Binomials

What is E(B, ), the expectation for the binomial distri-
bution B, ,

e How many heads do you expect to get after n tosses
of a biased coin with Pr(h) = p?

Method 1: Use the definition and crank it out:

n\ . ek
E(Bn.p> = Z—Ok(k)pk(l - p) '

This looks awful, but it can be calculated ...

Method 2: Use Induction; break it up into what hap-
pens on the first toss and on the later tosses.

e On the first toss you get heads with probability p
and tails with probability 1 — p. On the last n — 1
tosses, you expect E(B,_1,) heads. Thus, the ex-
pected number of heads is:

E(Byy) =p(l+ E(By-15)) + (1 — p)(E(Bn-1,))
=p+ E(anl,p)
E(Biy) =p

Now an easy induction shows that E(B, ) = np.

There’s an even easier way . ..
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Expectation is Linear

Theorem: E(X +Y)=E(X)+ E(Y)

Proof: Recall that
E(X) = XsesPr(s)X(s)

Thus,

EX+Y) =EesPr(s)(X +Y)(s)

= Yes Pr(s)X(s) + Xses Pr(s)Y (s)
=E(X)+E(Y).

Theorem: E(aX) = aE(X)

Proof:

E(aX) = Zses Pr(s)(aX)(s) = aXses X (s) = aE(X).




Example 1: Back to the expected value of tossing two
dice:

Let X5 be the count on the first die, X5 the count on the
second die, and let X be the total count.

Notice that
E(X))=E(Xy)=(1+2+3+4+5+6)/6=35

E(X)=E(X|+X,) = E(X))+E(Xy) =35+35=17

Example 2: Back to the expected value of B, .
Let X be the total number of successes and let X}, be the
outcome of the kth experiment, k =1,... n:

E(Xy)=p-1+(L—p)-0=p

X:X1+"'+Xn

Therefore

E(X)=E(X))+ -+ E(X,) =np.

Expectation of Poisson Distribution

Let X be Poisson with parameter \: fx(k) = e"\’]\% for
ke N.
Ak
E(X) =%2k-e Ak%
AN
~ Ve w
-2 AV
= )\e Zzozlm
_ N
= e et [Taylor series!]
=A
Does this make sense?

e Recall that, for example, X models the number of
incoming calls for a tech support center whose average
rate per minute is \.

Geometric Distribution

Consider a sequence of Bernoulli trials. Let X denote the
number of the first successful trial.

e E.g. the first time you see heads
X has a geometric distribution.
fx(k)=1-p)'p  keN*.

e The probability of seeing heads for the first time on
the kth toss is the probability of getting k — 1 tails
followed by heads

e This is also called a negative binomial distribution
of order 1.

o The negative binomial of order n gives the proba-
bility that it will take k trials to have n successes




