Averaging and Expectation

Suppose you toss a coin that's biased towards heads ($\operatorname{Pr}($ heads $)=$ $2 / 3)$ twice. How many heads do you expect to get?

- In mathematics-speak:

What's the expected number of heads?
What about if you toss the coin k times?
What's the average weight of the people in this classroom?

- That's easy: add the weights and divide by the number of people in the class.

But what about if I tell you I'm going to toss a coin to determine which person in the class I'm going to choose; if it lands heads, I'll choose someone at random from the first aisle, and otherwise I'll choose someone at random from the last aisle.

- What's the expected weight?

Averaging makes sense if you use an equiprobable distribution; in general, we need to talk about expectation.

Random Variables

To deal with expectation, we formally associate with every element of a sample space a real number.
Definition: A random variable on sample space S is a function from S to the real numbers.

Example: Suppose we toss a biased coin $(\operatorname{Pr}(h)=2 / 3)$ twice. The sample space is:

- hh - Probability 4/9
- ht - Probability $2 / 9$
- th - Probability $2 / 9$
- tt - Probability $1 / 9$

If we're interested in the number of heads, we would consider a random variable $\# H$ that counts the number of heads in each sequence:

$$
\# H(h h)=2 ; \quad \# H(h t)=\# H(t h)=1 ; \quad \# H(t t)=0
$$

Example: If we're interested in weights of people in the class, the sample space is people in the class, and we could have a random variable that associates with each person his or her weight.

Probability Distributions

If X is a random variable on sample space S, then the probability that X takes on the value c is

$$
\operatorname{Pr}(X=c)=\operatorname{Pr}(\{s \in S \mid X(s)=c\})
$$

Similarly,

$$
\operatorname{Pr}(X \leq c)=\operatorname{Pr}(\{s \in S \mid X(s) \leq c\} .
$$

This makes sense since the range of X is the real numbers.
Example: In the coin example,

$$
\operatorname{Pr}(\# H=2)=4 / 9 \text { and } \operatorname{Pr}(\# H \leq 1)=5 / 9
$$

Given a probability measure Pr on a sample space S and a random variable X, the probability distribution associated with X is $f_{X}(x)=\operatorname{Pr}(X=x)$.

- f_{X} is a probability measure on the real numbers.

The cumulative distribution associated with X is $F_{X}(x)=\operatorname{Pr}(X \leq x)$.

An Example With Dice

Suppose S is the sample space corresponding to tossing a pair of fair dice: $\{(i, j) \mid 1 \leq i, j \leq 6\}$.
Let X be the random variable that gives the sum:

- $X(i, j)=i+j$
$f_{X}(2)=\operatorname{Pr}(X=2)=\operatorname{Pr}(\{(1,1)\})=1 / 36$
$f_{X}(3)=\operatorname{Pr}(X=3)=\operatorname{Pr}(\{(1,2),(2,1)\})=2 / 36$

$$
f_{X}(7)=\operatorname{Pr}(X=7)=\operatorname{Pr}(\{(1,6),(2,5), \ldots,(6,1)\})=6 / 36
$$

$$
f_{X}(12)=\operatorname{Pr}(X=12)=\operatorname{Pr}(\{(6,6)\})=1 / 36
$$

Can similarly compute the cumulative distribution:

$$
\begin{aligned}
& F_{X}(2)=f_{X}(2)=1 / 36 \\
& F_{X}(3)=f_{X}(2)+f_{X}(3)=3 / 36 \\
& \vdots \\
& F_{X}(12)=1
\end{aligned}
$$

The Finite Uniform Distribution

The finite uniform distribution is an equiprobable distribution. If $S=\left\{x_{1}, \ldots, x_{n}\right\}$, where $x_{1}<x_{2}<\ldots<x_{n}$, then:

$$
\begin{aligned}
& f\left(x_{k}\right)=1 / n \\
& F\left(x_{k}\right)=k / n
\end{aligned}
$$

The Binomial Distribution

Suppose there is an experiment with probability p of success and thus probability $q=1-p$ of failure.

- For example, consider tossing a biased coin, where $\operatorname{Pr}(h)=p$. Getting "heads" is success, and getting tails is failure.

Suppose the experiment is repeated independently n times.

- For example, the coin is tossed n times.

This is called a sequence of Bernoulli trials.
Key features:

- Only two possibilities: success or failure.
- Probability of success does not change from trial to trial.
- The trials are independent.

What is the probability of k successes in n trials?
Suppose $n=5$ and $k=3$. How many sequences of 5 coin tosses have exactly three heads?

- hhhtt
- hhtht
- hhtth
:
$C(5,3)$ such sequences!
What is the probability of each one?

$$
p^{3}(1-p)^{2}
$$

Therefore, probability is $C(5,3) p^{3}(1-p)^{2}$.
Let $B_{n, p}(k)$ be the probability of getting k successes in n Bernoulli trials with probability p of success.

$$
B_{n, p}(k)=C(n, k) p^{k}(1-p)^{n-k}
$$

Not surprisingly, $B_{n, p}$ is called the Binomal Distribution.

The Poisson Distribution

A large call center receives, on average, λ calls/minute.

- What is the probability that exactly k calls come during a given minute?

Understanding this probability is critical for staffing!

- Similar issues arise if a printer receives, on average λ jobs/minute, a site gets λ hits/minute, ...
This is modelled well by the Poisson distribution with parameter λ :

$$
f_{\lambda}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

- $f_{\lambda}(0)=e^{-\lambda}$
- $f_{\lambda}(1)=e^{-\lambda} \lambda$
- $f_{\lambda}(2)=e^{-\lambda} \lambda^{2} / 2$
$e^{-\lambda}$ is a normalization constant, since

$$
1+\lambda+\lambda^{2} / 2+\lambda^{3} / 3!+\cdots=e^{\lambda}
$$

Deriving the Poisson

Poisson distribution $=$ limit of binomial distributions.
Suppose at most one call arrives in each second.

- Since λ calls come each minute, expect about $\lambda / 60$ each second.
- The probability that k calls come is $B_{60, \lambda / 60}(k)$

This model doesn't allow more than one call/second. What's so special about 60? Suppose we divide one minute into n time segments.

- Probability of getting a call in each segment is λ / n.
- Probability of getting k calls in a minute is

$$
\begin{aligned}
& B_{n, \lambda / n}(k) \\
= & C(n, k)(\lambda / n)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
= & C(n, k)\left(\frac{\lambda / n}{1-\frac{\lambda}{n}}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n} \\
= & \frac{\lambda^{k}}{k!(n-k)!}\left(\frac{1}{n-\lambda}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n}
\end{aligned}
$$

Now let $n \rightarrow \infty$:

- $\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n}=e^{-\lambda}$
- $\lim _{n \rightarrow \infty} \frac{n!}{(n-k)!}\left(\frac{1}{n-\lambda}\right)^{k}=1$

Conclusion: $\lim _{n \rightarrow \infty} B_{n, \lambda / n}(k)=e^{-\lambda \frac{\lambda^{k}}{k!}}$

New Distributions from Old

If X and Y are random variables on a sample space S, so is $X+Y, X+2 Y, X Y, \sin (X)$, etc.

For example,

- $(X+Y)(s)=X(s)+Y(s)$.
- $\sin (X)(s)=\sin (X(s))$

Note $\sin (X)$ is a random variable: a function from the sample space to the reals.

Some Examples

Example 1: A fair die is rolled. Let X denote the number that shows up. What is the probability distribution of $Y=X^{2}$?

$$
\begin{aligned}
\{s: Y(s)=k\} & =\left\{s: X^{2}(s)=k\right\} \\
& =\{s: X(s)=-\sqrt{k}\} \cup\{s: X(s)=\sqrt{k}\} .
\end{aligned}
$$

Conclusion: $f_{Y}(k)=f_{X}(\sqrt{k})+f_{X}(-\sqrt{k})$.
So $f_{Y}(1)=f_{Y}(4)=f_{Y}(9)=\cdots f_{Y}(36)=1 / 6$.
$f_{Y}(k)=0$ if $k \notin\{1,4,9,16,25,36\}$.
Example 2: A coin is flipped. Let X be 1 if the coin shows H and -1 if T. Let $Y=X^{2}$.

- In this case $Y \equiv 1$, so $\operatorname{Pr}(Y=1)=1$.

Example 3: If two dice are rolled, let X be the number that comes up on the first dice, and Y the number that comes up on the second.

- Formally, $X((i, j))=i, Y((i, j))=j$.

The random variable $X+Y$ is the total number showing.

Example 4: Suppose we toss a biased coin n times (more generally, we perform n Bernoulli trials). Let X_{k} describe the outcome of the k th coin toss: $X_{k}=1$ if the k th coin toss is heads, and 0 otherwise.

How do we formalize this?

- What's the sample space?

Notice that $\sum_{k=1}^{n} X_{k}$ describes the number of successes of n Bernoulli trials.

- If the probability of a single success is p, then $\sum_{k=1}^{n} X_{k}$ has distribution $B_{n, p}$
- The binomial distribution is the sum of Bernoullis

Independent random variables

In a roll of two dice, let X and Y record the numbers on the first and second die respectively.

- What can you say about the events $X=3, Y=2$?
- What about $X=i$ and $Y=j$?

Definition: The random variables X and Y are independent if for every x and y the events $X=x$ and $Y=y$ are independent.
Example: X and Y above are independent.
Definition: The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent if, for every $x_{1}, x_{2} \ldots, x_{n}$
$\operatorname{Pr}\left(X_{1}=x_{1} \cap \ldots \cap X_{n}=x_{n}\right)=\operatorname{Pr}\left(X_{1}=x_{1}\right) \ldots \operatorname{Pr}\left(X_{n}=x_{n}\right)$
Example: X_{k}, the success indicators in n Bernoulli trials, are independent.

Pairwise vs. mutual independence

Mutual independence implies pairwise independence; the converse may not be true:

Example 1: A ball is randomly drawn from an urn containing 4 balls: one blue, one red, one green and one multicolored (red + blue + green $)$

- Let X_{1}, X_{2} and X_{3} denote the indicators of the events the ball has (some) blue, red and green respectively.
- $\operatorname{Pr}\left(X_{i}=1\right)=1 / 2$, for $i=1,2,3$

X_{1} and X_{2} independent: | | $X_{1}=0$ | $X_{1}=1$ |
| :--- | ---: | ---: |
| $X_{2}=0$ | $1 / 4$ | $1 / 4$ |
| | $X_{2}=1$ | $1 / 4$ |

Similarly, X_{1} and X_{3} are independent; so are X_{2} and X_{3}. Are X_{1}, X_{2} and X_{3} independent? No!

$$
\begin{gathered}
\operatorname{Pr}\left(X_{1}=1 \cap X_{2}=1 \cap X_{3}=1\right)=1 / 4 \\
\operatorname{Pr}\left(X_{1}=1\right) \operatorname{Pr}\left(X_{2}=1\right) \operatorname{Pr}\left(X_{3}=1\right)=1 / 8 .
\end{gathered}
$$

Example 2: Suppose X_{1} and X_{2} are bits (0 or 1) chosen uniformly at random; $X_{3}=X_{1} \oplus X_{2}$.

- X_{1}, X_{2} are independent, as are X_{1}, X_{3} and X_{2}, X_{3}
- But X_{1}, X_{2}, and X_{3} are not mutually independent - X_{1} and X_{2} together determine X_{3} !

The distribution of $X+Y$

Suppose X and Y are independent random variables whose range is included in $\{0,1, \ldots, n\}$. For $k \in\{0,1, \ldots, 2 n\}$,

$$
(X+Y=k)=\cup_{j=0}^{k}((X=j) \cap(Y=k-j)) .
$$

Note that some of the events might be empty

- E.g., $X=k$ is bound to be empty if $k>n$.

This is a disjoint union so

$$
\begin{aligned}
& \operatorname{Pr}(X+Y=k) \\
= & \sum_{j=0}^{k} \operatorname{Pr}(X=j \cap Y=k-j) \\
= & \sum_{j=0}^{k} \operatorname{Pr}(X=j) \operatorname{Pr}(Y=k-j) \quad \text { [by independence] }
\end{aligned}
$$

Example: The Sum of Binomials

Suppose X has distribution $B_{n, p}, Y$ has distribution $B_{m, p}$, and X and Y are independent.

$$
\begin{aligned}
& \operatorname{Pr}(X+Y=k) \\
& =\sum_{j=0}^{k} \operatorname{Pr}(X=j \cap Y=k-j) \quad \text { [sum rule] } \\
& =\sum_{j=0}^{k} \operatorname{Pr}(X=j) \operatorname{Pr}(Y=k-j) \quad \text { [independence] } \\
& =\sum_{j=0}^{k}\binom{n}{j} p^{j}(1-p)^{n-j}\binom{m}{k-j} p^{k-j}(1-p)^{m-k+j} \\
& =\sum_{j=0}^{k}\binom{n}{j}\binom{m}{k-j} p^{k}(1-p)^{n+m-k} \\
& =\left(\sum_{j=0}^{k}\binom{n}{j}\binom{m}{k-j}\right) p^{k}(1-p)^{n+m-k} \\
& =\binom{n+m}{k} p^{k}(1-p)^{n+m-k} \\
& =B_{n+m, p}(k)
\end{aligned}
$$

Thus, $X+Y$ has distribution $B_{n+m, p}$.
An easier argument: Perform $n+m$ Bernoulli trials. Let X be the number of successes in the first n and let Y be the number of successes in the last m. X has distribution $B_{n, p}, Y$ has distribution $B_{m, p}, X$ and Y are independent, and $X+Y$ is the number of successes in all $n+m$ trials, and so has distribution $B_{n+m, p}$.

Expected Value

Suppose we toss a biased coin, with $\operatorname{Pr}(h)=2 / 3$. If the coin lands heads, you get $\$ 1$; if the coin lands tails, you get $\$ 3$. What are your expected winnings?

- $2 / 3$ of the time you get $\$ 1$;
$1 / 3$ of the time you get $\$ 3$
- $(2 / 3 \times 1)+(1 / 3 \times 3)=5 / 3$

What's a good way to think about this? We have a random variable W (for winnings):

- $W(h)=1$
- $W(t)=3$

The expectation of W is

$$
\begin{aligned}
E(W) & =\operatorname{Pr}(h) W(h)+\operatorname{Pr}(t) W(t) \\
& =\operatorname{Pr}(W=1) \times 1+\operatorname{Pr}(W=3) \times 3
\end{aligned}
$$

More generally, the expected value of random variable X on sample space S is

$$
E(X)=\sum_{x} x \operatorname{Pr}(X=x)
$$

An equivalent definition:

$$
E(X)=\Sigma_{s \in S} X(s) \operatorname{Pr}(s)
$$

Example: What is the expected count when two dice are rolled?

Let X be the count (the sum of the values on the two dice):

$$
\begin{aligned}
& E(X) \\
= & \sum_{i=2}^{12} i \operatorname{Pr}(X=i) \\
= & 2 \frac{1}{36}+3 \frac{2}{36}+4 \frac{3}{36}+\cdots+7 \frac{6}{36}+\cdots+12 \frac{1}{36} \\
= & \frac{252}{36} \\
= & 7
\end{aligned}
$$

Expectation of Binomials

What is $E\left(B_{n, p}\right)$, the expectation for the binomial distribution $B_{n, p}$

- How many heads do you expect to get after n tosses of a biased coin with $\operatorname{Pr}(h)=p$?

Method 1: Use the definition and crank it out:

$$
E\left(B_{n, p}\right)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

This looks awful, but it can be calculated ...
Method 2: Use Induction; break it up into what happens on the first toss and on the later tosses.

- On the first toss you get heads with probability p and tails with probability $1-p$. On the last $n-1$ tosses, you expect $E\left(B_{n-1, p}\right)$ heads. Thus, the expected number of heads is:

$$
\begin{aligned}
E\left(B_{n, p}\right) & =p\left(1+E\left(B_{n-1, p}\right)\right)+(1-p)\left(E\left(B_{n-1, p}\right)\right) \\
& =p+E\left(B_{n-1, p}\right) \\
E\left(B_{1, p}\right) & =p
\end{aligned}
$$

Now an easy induction shows that $E\left(B_{n, p}\right)=n p$.
There's an even easier way ...

Expectation is Linear

Theorem: $E(X+Y)=E(X)+E(Y)$

Proof: Recall that

$$
E(X)=\Sigma_{s \in S} \operatorname{Pr}(s) X(s)
$$

Thus,

$$
\begin{aligned}
E(X+Y) & =\Sigma_{s \in S} \operatorname{Pr}(s)(X+Y)(s) \\
& =\Sigma_{s \in S} \operatorname{Pr}(s) X(s)+\Sigma_{s \in S} \operatorname{Pr}(s) Y(s) \\
& =E(X)+E(Y) .
\end{aligned}
$$

Theorem: $E(a X)=a E(X)$
Proof:

$$
E(a X)=\Sigma_{s \in S} \operatorname{Pr}(s)(a X)(s)=a \Sigma_{s \in S} X(s)=a E(X) .
$$

Example 1: Back to the expected value of tossing two dice:
Let X_{1} be the count on the first die, X_{2} the count on the second die, and let X be the total count.

Notice that

$$
E\left(X_{1}\right)=E\left(X_{2}\right)=(1+2+3+4+5+6) / 6=3.5
$$

$E(X)=E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=3.5+3.5=7$
Example 2: Back to the expected value of $B_{n, p}$.
Let X be the total number of successes and let X_{k} be the outcome of the k th experiment, $k=1, \ldots, n$:

$$
\begin{gathered}
E\left(X_{k}\right)=p \cdot 1+(1-p) \cdot 0=p \\
X=X_{1}+\cdots+X_{n}
\end{gathered}
$$

Therefore

$$
E(X)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=n p
$$

Expectation of Poisson Distribution

Let X be Poisson with parameter $\lambda: f_{X}(k)=e^{-\lambda \frac{\lambda}{k}}$ for $k \in N$.

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{\infty} k \cdot e^{-\lambda \frac{\lambda^{k}}{k!}} \\
& =\sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{(k-1)!} \\
& =\lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \\
& =\lambda e^{-\lambda} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} \\
& =\lambda e^{-\lambda} e^{\lambda} \quad \text { [Taylor series!] } \\
& =\lambda
\end{aligned}
$$

Does this make sense?

- Recall that, for example, X models the number of incoming calls for a tech support center whose average rate per minute is λ.

Geometric Distribution

Consider a sequence of Bernoulli trials. Let X denote the number of the first successful trial.

- E.g., the first time you see heads
X has a geometric distribution.

$$
f_{X}(k)=(1-p)^{k-1} p \quad k \in N^{+}
$$

- The probability of seeing heads for the first time on the k th toss is the probability of getting $k-1$ tails followed by heads
- This is also called a negative binomial distribution of order 1.
- The negative binomial of order n gives the probability that it will take k trials to have n successes

