What's It All About?

- Continuous mathematics-calculus considers objects that vary continuously
o distance from the wall
- Discrete mathematics considers discrete objects, that come in discrete bundles
o number of babies: can't have 1.2
The mathematical techniques for discrete mathematics differ from those for continuous mathematics:
- counting/combinatorics
- number theory
- probability
- logic

We'll be studying these techniques in this course.

Why is it computer science?

This is basically a mathematics course:

- no programming
- lots of theorems to prove

So why is it computer science?
Discrete mathematics is the mathematics underlying almost all of computer science:

- Designing high-speed networks
- Finding good algorithms for sorting
- Doing good web searches
- Analysis of algorithms
- Proving algorithms correct

This Course

We will be focusing on:

- Tools for discrete mathematics:
- computational number theory (handouts)
* the mathematics behind the RSA cryptosystems
- a little graph theory (Chapter 3)
- counting/combinatorics (Chapter 4)
- probability (Chapter 6)
* randomized algorithms for primality testing, routing
- logic (Chapter 7)
* how do you prove a program is correct
- Tools for proving things:
- induction (Chapter 2)
- (to a lesser extent) recursion

First, some background you'll need but may not have ...

Sets

You need to be comfortable with set notation:

$$
S=\{m \mid 2 \leq m \leq 100, m \text { is an integer }\}
$$

S is
the set of
all m
such that
m is between 2 and 100 and
m is an integer.

Important Sets

(More notation you need to know and love ...)

- $N($ occasionally $I N)$: the nonnegative integers $\{0,1,2,3, \ldots\}$
- N^{+}: the positive integers $\{1,2,3, \ldots\}$
- Z : all integers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- Q : the rational numbers $\{a / b: a, b \in Z, b \neq 0\}$
- R: the real numbers
- Q^{+}, R^{+}: the positive rationals/reals

Set Notation

- $|S|=$ cardinality of (number of elements in) S
- $|\{a, b, c\}|=3$
- Subset: $A \subset B$ if every element of A is an element of B
- Note: Lots of people (including me, but not the authors of the text) usually write $A \subset B$ only if A is a strict or proper subset of B (i.e., $A \neq B$). I write $A \subseteq B$ if $A=B$ is possible.
- Power set: $\mathcal{P}(S)$ is the set of all subsets of S (sometimes denoted 2^{S}).

$$
\begin{aligned}
& \circ \text { E.g., } \mathcal{P}(\{1,2,3\})= \\
& \quad\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} \\
& \circ|\mathcal{P}(S)|=2^{|S|}
\end{aligned}
$$

Set Operations

- Union: $S \cup T$ is the set of all elements in S or T
- $S \cup T=\{x \mid x \in S$ or $x \in T\}$
- $\{1,2,3\} \cup\{3,4,5\}=\{1,2,3,4,5\}$
- Intersection: $S \cap T$ is the set of all elements in both S and T
- $S \cap T=\{x \mid x \in S, x \in T\}$
- $\{1,2,3\} \cap\{3,4,5\}=\{3\}$
- Set Difference: $S-T$ is the set of all elements in S not in T
- $S-T=\{x \mid x \in S, x \notin T\}$
- $\{3,4,5\}-\{1,2,3\}=\{4,5\}$
- Complementation: \bar{S} is the set of elements not in S
- What is $\{1,2,3\}$?
- Complementation doesn't make sense unless there is a universe, the set of elements we want to consider.
- If U is the universe, $\bar{S}=\{x \mid x \in U, x \notin S\}$
- $\bar{S}=U-S$.

Venn Diagrams

Sometimes a picture is worth a thousand words (at least if we don't have too many sets involved).

A Connection

Lemma: For all sets S and T, we have

$$
S=(S \cap T) \cup(S-T)
$$

Proof: We'll show (1) $S \subset(S \cap T) \cup(S-T)$ and (2) $(S \cap T) \cup(S-T) \subset S$.

For (1), suppose $x \in S$. Either
(a) $x \in T$ or (b) $x \notin T$.

If (a) holds, then $x \in S \cap T$.
If (b) holds, then $x \in S-T$.
In either case, $x \in(S \cap T) \cup(S-T)$.
Since this is true for all $x \in S$, we have (1).
For (2), suppose $x \in(S \cap T) \cup(S-T)$. Thus, either (a) $x \in(S \cap T)$ or $x \in(S-T)$. Either way, $x \in S$.

Since this is true for all $x \in(S \cap T) \cup(S-T)$, we have (2).

Two Important Morals

1. One way to show $S=T$ is to show $S \subset T$ and $T \subset S$.
2. One way to show $S \subset T$ is to show that for every $x \in S, x$ is also in T.

Relations

- Cartesian product:
$S \times T=\{(s, t): s \in S, t \in T\}$
- $\{1,2,3\} \times\{3,4\}=$ $\{(1,3),(2,3),(3,3),(1,4),(2,4),(3,4)\}$
- $|S \times T|=|S| \times|T|$.
- A relation on S and T (or, on $S \times T$) is a subset of $S \times T$
- A relation on S is a subset of $S \times S$
- Taller than is a relation on people: (Joe,Sam) is in the Taller than relation if Joe is Taller than Sam
- Larger than is a relation on R :

$$
L=\{(x, y) \mid x, y \in R, x>y\}
$$

- Divisibility is a relation on N :

$$
D=\{(x, y)|x, y \in N, x| y\}
$$

Reflexivity, Symmetry, Transitivity

- A relation R on S is reflexive if $(x, x) \in R$ for all $x \in S$.
$0 \leq$ is reflexive; $<$ is not
- A relation R on S is symmetric if $(x, y) \in R$ implies $(y, x) \in R$.
- "sibling-of" is symmetric (what about "sister of")
$0 \leq$ is not symmetric
- A relation R on S is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.
$\circ \leq,<, \geq,>$ are all transitive;
- "parent-of" is not transitive; "ancestor-of" is

Pictorially, we have:

Transitive Closure

[[NOT DISCUSSED ENOUGH IN THE TEXT]]

The transitive closure of a relation R is the least relation R^{*} such that

1. $R \subset R^{*}$
2. R^{*} is transitive (so that if $(u, v),(v, w) \in R^{*}$, then so is (u, w)).

Example: Suppose $R=\{(1,2),(2,3),(1,4)\}$.

- $R^{*}=\{(1,2),(1,3),(2,3),(1,4)\}$
- we need to add $(1,3)$, because $(1,2),(2,3) \in R$

Note that we don't need to add $(2,4)$.

- If $(2,1),(1,4)$ were in R, then we'd need $(2,4)$
- $(1,2),(1,4)$ doesn't force us to add anything (it doesn't fit the "pattern" of transitivity.
Note that if R is already transitive, then $R^{*}=R$.

Equivalence Relations

- A relation R is an equivalence relation if it is reflexive, symmetric, and transitive
$0=$ is an equivalence relation
- Parity is an equivalence relation on N;
$(x, y) \in$ Parity if $x-y$ is even

Functions

We think of a function $f: S \rightarrow T$ as providing a mapping from S to T. But...

Formally, a function is a relation R on $S \times T$ such that for each $s \in S$, there is a unique $t \in T$ such that $(s, t) \in R$. If $f: S \rightarrow T$, then S is the domain of f, T is the range; $\{y: f(x)=y$ for some $x \in S\}$ is the image.

We often think of a function as being characterized by an algebraic formula

- $y=3 x-2$ characterizes $f(x)=3 x-2$.

It ain't necessarily so.

- Some formulas don't characterize functions:
- $x^{2}+y^{2}=1$ defines a circle; no unique y for each x
- Some functions can't be characterized by algebraic formulas

$$
\circ f(n)= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}
$$

Function Terminology

Suppose $f: S \rightarrow T$

- f is onto (or surjective) if, for each $t \in T$, there is some $s \in S$ such that $f(s)=t$.

○ if $f: R^{+} \rightarrow R^{+}, f(x)=x^{2}$, then f is onto
० if $f: R \rightarrow R, f(x)=x^{2}$, then f is not onto

- f is one-to-one (1-1, injective) if it is not the case that $s \neq s^{\prime}$ and $f(s)=f\left(s^{\prime}\right)$.
- if $f: R^{+} \rightarrow R^{+}, f(x)=x^{2}$, then f is 1-1

० if $f: R \rightarrow R, f(x)=x^{2}$, then f is not 1-1.

- a function is bijective if it is 1-1 and onto.
o if $f: R^{+} \rightarrow R^{+}, f(x)=x^{2}$, then f is bijective
- if $f: R \rightarrow R, f(x)=x^{2}$, then f is not bijective.

If $f: S \rightarrow T$ is bijective, then $|S|=|T|$.

Inverse Functions

If $f: S \rightarrow T$, then f^{-1} maps an element in the range of f to all the elements that are mapped to it by f.

$$
f^{-1}(t)=\{s \mid f(s)=t\}
$$

- if $f(2)=3$, then $2 \in f^{-1}(3)$.
f^{-1} is not a function from range (f) to S.
It is a function if f is one-to-one.
- In this case, $f^{-1}(f(x))=x$.

Functions You Should Know (and Love)

- Absolute value: Domain $=R$; Range $=\{0\} \cup R^{+}$

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

- $|3|=|-3|=3$
- Floor function: Domain $=R$; Range $=Z$
$\lfloor x\rfloor=$ largest integer not greater than x - $\lfloor 3.2\rfloor=3 ;\lfloor\sqrt{3}\rfloor=1 ;\lfloor-2.5\rfloor=-3$
- Ceiling function: Domain $=R$; Range $=Z$
$\lceil x\rceil=$ smallest integer not less than x
- $\lceil 3.2\rceil=4 ;\lceil\sqrt{3}\rceil=2 ;\lceil-2.5\rceil=-2$
- Factorial function: Domain $=$ Range $=N$

$$
n!=n(n-1)(n-2) \ldots 3 \times 2 \times 1
$$

- $5!=5 \times 4 \times 3 \times 2 \times 1=120$
- By convention, $0!=1$

Exponents

Exponential with base a : Domain $=R$, Range $=R^{+}$

$$
f(x)=a^{x}
$$

- Note: a, the base, is fixed; x varies
- You probably know: $a^{n}=a \times \cdots \times a$ (n times)

How do we define $f(x)$ if x is not a positive integer?

- Want: (1) $a^{x+y}=a^{x} a^{y}$; (2) $a^{1}=a$

This means

- $a^{2}=a^{1+1}=a^{1} a^{1}=a \times a$
- $a^{3}=a^{2+1}=a^{2} a^{1}=a \times a \times a$
- . .
- $a^{n}=a \times \ldots \times a$ (n times $)$

We get more:

- $a=a^{1}=a^{1+0}=a \times a^{0}$
- Therefore $a^{0}=1$
- $1=a^{0}=a^{b+(-b)}=a^{b} \times a^{-b}$
- Therefore $a^{-b}=1 / a^{b}$
- $a=a^{1}=a^{\frac{1}{2}+\frac{1}{2}}=a^{\frac{1}{2}} \times a^{\frac{1}{2}}=\left(a^{\frac{1}{2}}\right)^{2}$
- Therefore $a^{\frac{1}{2}}=\sqrt{a}$
- Similar arguments show that $a^{\frac{1}{k}}=\sqrt[k]{a}$
- $a^{m x}=a^{x} \times \cdots \times a^{x}(m$ times $)=\left(a^{x}\right)^{m}$
- Thus, $a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{a})^{m}$.

This determines a^{x} for all x rational. The rest follows by continuity.

Computing a^{n} quickly

What's the best way to compute a^{1000} ?
One way: multiply $a \times a \times a \times a \ldots$

- This requires 999 multiplications.

Can we do better?
How many multiplications are needed to compute:

- a^{2}
- a^{4}
- a^{8}
- a^{16}
- . .

Write 1000 in binary: 1111101000

- How many multiplications are needed to calculate a^{1000} ?

Logarithms

Logarithm base a: Domain $=R^{+} ;$Range $=R$

$$
y=\log _{a}(x) \Leftrightarrow a^{y}=x
$$

- $\log _{2}(8)=3 ; \log _{2}(16)=4 ; 3<\log _{2}(15)<4$

The key properties of the log function follow from those for the exponential:

1. $\log _{a}(1)=0$ (because $a^{0}=1$)
2. $\log _{a}(a)=1$ (because $a^{1}=a$)
3. $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$

Proof: Suppose $\log _{a}(x)=z_{1}$ and $\log _{a}(y)=z_{2}$.
Then $a^{z_{1}}=x$ and $a^{z_{2}}=y$.
Therefore $x y=a^{z_{1}} \times a^{z_{2}}=a^{z_{1}+z_{2}}$.
Thus $\log _{a}(x y)=z_{1}+z_{2}=\log _{a}(x)+\log _{a}(y)$.
4. $\log _{a}\left(x^{r}\right)=r \log _{a}(x)$
5. $\log _{a}(1 / x)=-\log _{a}(x)$ (because $\left.a^{-y}=1 / a^{y}\right)$
6. $\log _{b}(x)=\log _{a}(x) / \log _{a}(b)$

Examples:

- $\log _{2}(1 / 4)=-\log _{2}(4)=-2$.
- $\log _{2}(-4)$ undefined

$$
\begin{aligned}
& \log _{2}\left(2^{10} 3^{5}\right) \\
= & \log _{2}\left(2^{10}\right)+\log _{2}\left(3^{5}\right) \\
= & 10 \log _{2}(2)+5 \log _{2}(3) \\
= & 10+5 \log _{2}(3)
\end{aligned}
$$

Limit Properties of the Log Function

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \log (x)=\infty \\
& \lim _{x \rightarrow \infty} \frac{\log (x)}{x}=0
\end{aligned}
$$

As x gets large $\log (x)$ grows without bound.
But x grows MUCH faster than $\log (x)$.

In fact, $\lim _{x \rightarrow \infty}\left(\log (x)^{m}\right) / x=0$

Polynomials

$f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}$ is a polynomial function.

- a_{0}, \ldots, a_{k} are the coefficients

You need to know how to multiply polynomials:

$$
\begin{aligned}
& \left(2 x^{3}+3 x\right)\left(x^{2}+3 x+1\right) \\
= & 2 x^{3}\left(x^{2}+3 x+1\right)+3 x\left(x^{2}+3 x+1\right) \\
= & 2 x^{5}+6 x^{4}+2 x^{3}+3 x^{3}+9 x^{2}+3 x \\
= & 2 x^{5}+6 x^{4}+5 x^{3}+9 x^{2}+3 x
\end{aligned}
$$

Exponentials grow MUCH faster than polynomials:

$$
\lim _{x \rightarrow \infty} \frac{a_{0}+\cdots+a_{k} x^{k}}{b^{x}}=0 \text { if } b>1
$$

Why Rates of Growth Matter

Suppose you want to design an algorithm to do sorting.

- The naive algorithm takes time $n^{2} / 4$ on average to sort n items
- A more sophisticated algorithm times time $2 n \log (n)$

Which is better?

$$
\lim _{n \rightarrow \infty}\left(2 n \log (n) /\left(n^{2} / 4\right)\right)=\lim _{n \rightarrow \infty}(8 \log (n) / n)=0
$$

For example,

- if $n=1,000,000,2 n \log (n)=40,000,000-$ this is doable $n^{2} / 4=250,000,000,000-$ this is not doable

Algorithms that take exponential time are hopeless on large datasets.

Sum and Product Notation

$$
\begin{gathered}
\sum_{i=0}^{k} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k} \\
\sum_{i=2}^{5} i^{2}=2^{2}+3^{2}+4^{2}+5^{2}=54
\end{gathered}
$$

Can limit the set of values taken on by the index i :

$$
\sum_{\{i: 2 \leq i \leq 8 \mid i \text { even }\}} a_{i}=a_{2}+a_{4}+a_{6}+a_{8}
$$

Can have double sums:

$$
\begin{aligned}
& \sum_{i=1}^{2} \Sigma_{j=0}^{3} a_{i j} \\
= & \Sigma_{i=1}^{2}\left(\Sigma_{j=0}^{3} a_{i j}\right) \\
= & \Sigma_{j=0}^{3} a_{1 j}+\Sigma_{j=0}^{3} a_{2 j} \\
= & a_{10}+a_{11}+a_{12}+a_{13}+a_{20}+a_{21}+a_{22}+a_{23}
\end{aligned}
$$

Product notation similar:

$$
\prod_{i=0}^{k} a_{i}=a_{0} a_{1} \cdots a_{k}
$$

Changing the Limits of Summation

This is like changing the limits of integration.

- $\Sigma_{i=1}^{n+1} a_{i}=\Sigma_{i=0}^{n} a_{i+1}=a_{1}+\cdots+a_{n+1}$

Steps:

- Start with $\Sigma_{i=1}^{n+1} a_{i}$.
- Let $j=i-1$. Thus, $i=j+1$.
- Rewrite limits in terms of $j: i=1 \rightarrow j=0 ; i=$ $n+1 \rightarrow j=n$
- Rewrite body in terms of $a_{i} \rightarrow a_{j+1}$
- Get $\Sigma_{j=0}^{n} a_{j+1}$
- Now replace j by $i(j$ is a dummy variable). Get

$$
\sum_{i=0}^{n} a_{i+1}
$$

Matrix Algebra

An $m \times n$ matrix is a two-dimensional array of numbers, with m rows and n columns:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- A $1 \times n$ matrix $\left[a_{1} \ldots a_{n}\right]$ is a row vector.
- An $m \times 1$ matrix is a column vector.

We can add two $m \times n$ matrices:

- If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ then $A+B=\left[a_{i j}+b_{i j}\right]$.

$$
\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]+\left[\begin{array}{ll}
3 & 7 \\
4 & 2
\end{array}\right]=\left[\begin{array}{cc}
5 & 10 \\
9 & 9
\end{array}\right]
$$

Another important operation: transposition.

- If we transpose an $m \times n$ matrix, we get an $n \times m$ matrix by switching the rows and columns.

$$
\left[\begin{array}{ccc}
2 & 3 & 9 \\
5 & 7 & 12
\end{array}\right]^{T}=\left[\begin{array}{cc}
2 & 5 \\
3 & 7 \\
9 & 12
\end{array}\right]
$$

