Total Probability Theorem

- Claim. If $B \subset A$ then $Pr(B) \leq Pr(A)$.
- **Proof.** $A = B \cup (A \setminus B)$, so $\Pr(A) = \Pr(B) + \Pr(A \setminus B) \ge \Pr(B)$.
- **Def.** The events A_1, \ldots, A_n form a partition of the sample space Ω if
 - 1. A_i are mutually exclusive: $A_i \cap A_j = \emptyset$ for $i \neq j$.
 - $2. A_1 \cup \ldots \cup A_n = \Omega.$
- Total Probability Theorem. Let A_1, \ldots, A_n be a partition of Ω . For any event B,

$$\Pr(B) = \sum_{j=1}^{n} \Pr(A_j) \Pr(B|A_j).$$

• **Proof.** $B = \cup (B \cap A_j)$ (disjoint union), so

$$\Pr(B) = \sum_{j=1}^{n} \Pr(B \cap A_j).$$

The theorem follows from $\Pr(B \cap A_j) = \Pr(A_j) \Pr(B|A_j)$.

• The latter holds for A_j with $\Pr(A_j) = 0$ if we define $\Pr(A_j) \Pr(B|A_j) := 0$ since then $P(B \cap A_j) = 0$

Example

- In a certain county
 - · 60% of registered voters are Republicans
 - \cdot 30% are Democrats
 - \cdot 10% are Independents.
- When those voters were asked about increasing military spending
 - \cdot 40% of Republicans opposed it
 - \cdot 65% of the Democrats opposed it
 - 55% of the Independents opposed it.
- What is the probability that a randomly selected voter in this county opposes increased military spending?

- $\Omega = \{\text{registered voters in the county}\}\$
- $R = \{\text{registered republicans}\}, \Pr(R) = 0.6$
- $D = \{\text{registered democrats}\}, \Pr(D) = 0.3$
- $I = \{\text{registered independents}\}, \Pr(I) = 0.1$
- $B = \{\text{registered voters opposing increased military spending}\}$
- Pr(B|R) = 0.4, Pr(B|D) = 0.65, Pr(B|I) = 0.55.

By the total probability theorem:

$$Pr(B) = Pr(B|R) Pr(R) + Pr(B|D) Pr(D) + Pr(B|I) Pr(I)$$

= $(0.4 \cdot 0.6) + (0.65 \cdot 0.3) + (0.55 \cdot 0.1) = 0.49$.

Bayes' Theorem

• Bayes Theorem. Let A_1, \ldots, A_n be a partition of Ω . For any event B

$$\Pr(A_i|B) = \frac{\Pr(A_i)\Pr(B|A_i)}{\sum_{j=1}^n \Pr(A_j)\Pr(B|A_j)}.$$

• Proof.

$$Pr(A_i|B) = \frac{Pr(A_i \cap B)}{Pr(B)}$$
$$= \frac{Pr(A_i) Pr(B|A_i)}{\sum_{j=1}^{n} Pr(A_j) Pr(B|A_j)}.$$

- Example.
 - · A registered voter from our county writes a letter to the local paper, arguing against increased military spending. What is the probability that this voter is a Democrat?
 - · Presumably that is Pr(D|B), so by Bayes' theorem:

$$Pr(D|B) = \frac{0.65 \cdot 0.3}{(0.4 \cdot 0.6) + (0.65 \cdot 0.3) + (0.55 \cdot 0.1)}$$
$$= \frac{0.195}{0.49} \approx 0.398.$$

AIDS

- Just for the heck of it Bob decides to take a test for AIDS and it comes back positive.
- The test is 99% effective (1% FP and FN).
- Suppose 0.3% of the population in Bob's "bracket" has AIDS.
- What is the probability that he has AIDS?
- $\Omega = \{\text{all the people in Bob's bracket}\}.$
 - $A_1 = \{\text{people in } \Omega \text{ with AIDS}\}, \Pr(A_1) = 0.003$
 - $\cdot A_2 = \{\text{people in } \Omega \text{ without AIDS}\}, \Pr(A_2) = 0.997$
 - $\cdot B = \{ \text{people in } \Omega \text{ who would test positive} \}$
 - $\Pr(B|A_1) = .99 \text{ and } \Pr(B|A_2) = .01$
 - · By Bayes' rule

$$\Pr(A_1|B) = \frac{0.99 \cdot 0.003}{(0.99 \cdot 0.003) + (0.01 \cdot 0.997)}$$

$$\approx \frac{0.003}{0.003 + 0.01}$$

$$\approx 0.23.$$

Random Variables

- What is the probbaility that:
 - \cdot in k out of n flips a coin will land on its head
 - \cdot k out of n randomly selected people will test positive to AIDS
 - $\cdot k$ out of n rolled die will show an even number
 - a student will correctly guess k out of n multiple choice questions with a fixed number of choices.
- Mathematicians realized that often a problem in probability can be summarized in terms of a "random variable".
- **Definition.** A random variable on a sample space Ω is a function from Ω to \mathbb{R} .
- Example. A coin is flipped 10 times.
 - Ω is the space of all sequences of H and T of length 10.
 - · Let X count the number of heads.
 - For example X(HHTHHTTHTH) = 6.
- \bullet Can you think of an analogous X for the other problems mentioned above?

- Example. What is the probability that a randomly chosen person in the class will weigh more than 160 lbs.?
 - · A natural random variable in this case is the weight of the selected student.
- What is the difference between the range of values our two random variables can attain?

Probability Distributions

- There is a natural probabilistic structure induced on a random variable X defined on Ω :
 - The set $\{\omega \in \Omega : X(\omega) = c\}$ is an event.
 - · So we can ask for

$$\Pr(X = c) = \Pr(\{\omega \in \Omega : X(\omega) = c\}).$$

Example. A biased coin (Pr(H) = 2/3) is flipped twice.

· Let X count the number of heads:

$$Pr(X = 0) = Pr({TT}) = (1/3)^{2} = 1/9.$$

$$Pr(X = 1) = Pr({HT, TH}) = 2 \cdot 1/3 \cdot 2/3 = 4/9.$$

$$Pr(X = 2) = Pr({HH}) = (2/3)^{2} = 4/9.$$

• Similarly we might be interested in:

$$\Pr(X \le c) = \Pr(\{\omega \in \Omega : X(\omega) \le c\},\$$

and more generally, for any $T \subset \mathbb{R}$:

$$\Pr(X \in T) = \Pr(\{\omega \in \Omega : X(\omega) \in T\}.$$

• In our coin example,

$$\Pr(X \le 1) = \Pr(\{TT, HT, TH\}) = 1/9 + 4/9 = 5/9.$$