CS 280 Fall 2003

Homework #1

Due: Monday, September 8, in class

If you turn in hand-written work, it must be legible, or it will not be graded.

- 1. Defining symmetric difference of sets by $A + B := (A B) \cup (B A)$, show that $A + B = \emptyset \Leftrightarrow A = B$. (Notice that this means that any equation involving sets can be converted to one whose RHS is \emptyset .)
- 2. Show that any set equation involving one unknown set X whose RHS is \emptyset can be rewritten as $(A \cap X) \cup (B \cap \overline{X}) = \emptyset$ where neither A nor B involve X. (Assume the equation is written using only \cap , \cup and complement.)
- 3. Show that $A = B = \emptyset$ iff $A \cup B = \emptyset$. (Notice that this means that the equation in part 2 is equivalent to two simultaneous equations $A \cap X = \emptyset$ and $B \cap \overline{X} = \emptyset$.
- 4. Show that the pair of simultaneous equations in part 3 has a solution iff $B \subseteq \overline{A}$. Moreover, any X with $B \subseteq X \subseteq \overline{A}$ is such a solution.
- 5. Apply this to find necessary and sufficient conditions that the equation $X \cup C = D$ has a solution.
- 6. In the set $Z_{>0}^* \times Z_{>0}^*$, define $(a,b) \sim (c,d)$ iff a+d=b+c. Prove that \sim is an equivalence relation and describe the equivalence classes.
- 7. (Question 12 on page 20.)
- 8. Suppose that $f: A \to B$ is an "onto" function and define a relation \sim on A by $a \sim a'$ iff f(a) = f(a'). Show that \sim is an equivalence relation. If we let $C = A / \sim$ and $\eta: A \to C$ by $\eta(a) := [a]$, show that there exists a "one-to-one and onto" function $g: C \to B$ such that $f = g_0 \eta$.
- 9. Define "<" on $\mathbb{Z}_{\geq 0}^*$ by p < q iff $p \mid q$. Show that < is a partial order.

^{*} It was not possible to render this character correctly – please substitute the Z with the character "zed".

Algebra of Sets

1.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

2.
$$A \cup B = B \cup A$$

3.
$$A \cup (B \wedge C) = (A \cup B) \cap (A \cup C)$$

4.
$$A \cup \emptyset = A$$

5.
$$A \cup \overline{A} = U$$

6.
$$A \cup B = A \quad \forall B \Rightarrow B = \emptyset$$

7.
$$(A \cup B = U) \land (A \cap B = \emptyset) \Rightarrow B = \overline{A}$$

8.
$$\overset{=}{A} = A$$

9.
$$\bar{Q} = U$$

10.
$$A \cup A = A$$

11.
$$A \cup U = U$$

12.
$$A \cup (A \cap B) = A$$

13.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 (de Morgan)

Duality

Swap ∪ ∩

and Ø u

Then using \cup , \cap , and complement, dual theorem true.