Full name: Student ID:

Statement of integrity: I did not, and will not, break the rules of academic integrity on this exam.

(Signature)

You must **show your work** and/or give clear explanations or reasons for each answer you give. If you use a formula, show all parts of the formula before simplifying. Correct answers without explanation will be worth 0. Also, please indicate clearly your final answer (e.g. by drawing a box around it or similarly highlighting it).

- 1. (4 points each) Determine which of the following propositions are tautologies:
  - a)  $(p \to q) \leftrightarrow (\neg q \to \neg p)$

b)  $((p \to q) \to r) \leftrightarrow (p \to (q \to r))$ 

(Pay attention to the parentheses!)

c)  $(s \to p) \lor (\neg p \land s)$ 

2. (4 points each) Determine whether each of the following statements is true or false. The domain of discourse in each case is the real numbers.

a) 
$$\exists x \exists y ((x > y) \to (x^2 < y^2))$$

b) 
$$\forall x \exists z \forall y ((x < y) \rightarrow ((z > x) \land (z < y)))$$

c) 
$$\forall x(((x>0) \to (x^3 < 0)) \lor ((x^3 < 0) \to (x>0)))$$

- 3. (5 points each)
  - a) Let  $A = \{\emptyset, \{\emptyset\}\}\$ . Find P(A), the power set of A.

b) Show that  $(A-C)\cap (C-B)=\emptyset$ . You must give a logical argument, not just show Venn diagrams.

4. (10 points) Let X and Y be sets and suppose there is an injection (1-to-1 function)  $f: X \to Y$  (but f is not necessarily onto). Prove that there is a surjection (onto function)  $g: Y \to X$  (i.e, for each  $x \in X$ , there exists  $y \in Y$  so that g(y) = x).

- 5. (5 points each) a) Find  $\sum_{n=1}^{200} n$

b) Find  $\sum_{n=0}^{25} 3(-3)^n$ 

- 6. a) (2 points each) Which of the following have solutions? Explain why or why not. If there is a solution, use the Euclidean algorithm to find it.
  - i)  $8x \equiv 1 \mod 12$
  - ii)  $7x \equiv 1 \mod 30$
  - iii)  $100x \equiv 1 \mod 102$

| b) (5 points) If the product of two integers is $2^73^85^27^{11}$ and their greatest common divisor is $2^33^45$ , what is their least common multiple? Explain. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                  |
| 7. (10 points) Prove by induction that 5 divides $11^n - 6$ for all positive integers $n$ .                                                                      |
|                                                                                                                                                                  |
|                                                                                                                                                                  |