## CS 280 Prelim 1 Solutions October 7, 1999

Show all your work.

1. (15 points) Determine which of the following propositions are tautologies

a) 
$$(p \to \neg p) \leftrightarrow \neg p$$
 b)  $(p \to \neg q) \leftrightarrow \neg (p \land q)$  c)  $((\neg p \land q) \to r) \to ((\neg q \to p) \to r)$ .

## Answer:

a) For all  $a, b, a \to b$  is always equivalent to  $b \vee \neg a$ . So  $p \to \neg p$  is always equivalent to  $\neg p \vee \neg p$ , which is clearly equivalent to  $\neg p$ . (Could also use a truth table).

b) The following truth table shows that  $(p \rightarrow \neg q) \leftrightarrow \neg (p \land q)$  is indeed a tautology.

| p | q | $\neg q$ | $p \to \neg q$ | $\neg(p \land q)$ | $(p \to \neg q) \leftrightarrow \neg (p \land q)$ |
|---|---|----------|----------------|-------------------|---------------------------------------------------|
| 0 | 0 | 1        | 1              | 1                 | 1                                                 |
| 0 | 1 | 0        | 1              | 1                 | 1                                                 |
| 1 | 0 | 1        | 1              | 1                 | 1                                                 |
| 1 | 1 | 0        | 0              | 0                 | 1                                                 |

c) The formula is not a tautology. It suffices to show one row in a truth table that assigns 0 to the whole formula:

2. (15 points)

a) Establish the logical equivalence of  $\neg \forall x (A \to B)$  and  $\exists x (A \land \neg B)$ .

**Answer:** Put  $S \equiv \neg \forall x (A \to B)$ . From the truth table, we know that  $A \to B$  is equivalent to  $\neg A \lor B$ , so S is equivalent to  $\neg \forall x (\neg A \lor B)$ . Also, by Table 3, p.33, we know this is equivalent to  $\exists x \neg (\neg A \lor B)$ . Now using de Morgan's rules, this becomes  $\exists x (A \land \neg B)$ .

b) Show that  $\exists x(A(x) \land B(x))$  and  $\exists xA(x) \land \exists xB(x)$  are not logically equivalent.

**Answer:** Let the universe of discourse be  $\mathcal{Z}$ , the set of integers. Let  $A(x) \equiv$  "x is positive," and let  $B(x) \equiv$  "x is negative." Then the first statement says that there exists an integer which is both positive and negative, which is false. The second statement says that there exists a positive integer and there exists a negative integer, which is true. So the two are not equivalent.

3. (15 points) The *composition* of functions f and g, denoted by  $f \circ g$ , is defined by  $(f \circ g)(a) = f(g(a))$ . The *inverse* of h is the function  $h^{-1}$  such that  $h^{-1} \circ h$  and  $h \circ h^{-1}$  are identity functions, i.e.  $(h^{-1} \circ h)(a) = a$  and  $(h \circ h^{-1})(b) = b$  for all a from the domain of h and all b from the codomain of h.

a) Give an example of f and g such that  $f \circ g$  and  $g \circ f$  are different **Answer:** Put f(x) = x + 1, and  $g(x) = x^2$ . Then  $(f \circ g)(x) = x^2 + 1$ , whereas  $(g \circ f)(x) = (x + 1)^2$ .

b) Suppose f and g are invertible. Show that  $(f \circ g)^{-1}$  equals to  $g^{-1} \circ f^{-1}$ . **Answer:** It suffices to demonstrate that

$$((f \circ g) \circ (g^{-1} \circ f^{-1}))(x) = x \text{ and } ((g^{-1} \circ f^{-1}) \circ (f \circ g))(y) = y.$$

The cases are similar. We consider the first one only.

$$((f \circ g) \circ (g^{-1} \circ f^{-1}))(x) = (f \circ g)((g^{-1} \circ f^{-1})(x))$$

$$= f(g((g^{-1} \circ f^{-1})(x)))$$

$$= f(g(g^{-1}(f^{-1}(x))))$$

$$= f((g \circ g^{-1})(f^{-1}(x)))$$

$$= f(f^{-1}(x))$$

$$= (f \circ f^{-1})(x)$$

$$= x$$

4. (10 points)

a) How many multiplications does the standard row-column algorithm uses to compute the product of an  $m \times n$  matrix and an  $n \times p$  matrix? Explain why.

**Answer:** If A is  $m \times n$  and B is  $n \times p$ , and  $C = A \cdot B$ , then

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

This formula involves n multiplications for each entry  $C_{ij}$ . The matrix C has size mp, i.e., there are mp entries  $C_{ij}$ , so the total number of multiplications is mnp.

b) Suppose you have to find  $A \cdot B \cdot C$ , were A is a  $3 \times 10$  matrix,  $B - 10 \times 50$  matrix and  $C - 50 \times 2$  matrix. Which order of multiplication should you choose:  $(A \cdot B) \cdot C$  or  $A \cdot (B \cdot C)$ ? **Answer:** Count the number of multiplications in both ways:

$$(A \cdot B) \cdot C$$
 requires  $(3 \cdot 10 \cdot 50) + (3 \cdot 50 \cdot 2) = 1800$ 

$$A \cdot (B \cdot C)$$
 requires  $(10 \cdot 50 \cdot 2) + (3 \cdot 10 \cdot 2) = 1060$ 

The second way is faster.

5. (15 points) Compute the greatest common divisor (gcd) of 156 and 93. Find integers x and y such that  $156x + 93y = \gcd(156, 93)$ .

**Answer.** Use Euclid's algorithm:

$$156 = 1 \cdot 93 + 63$$

$$93 = 1 \cdot 63 + 30$$

$$63 = 2 \cdot 30 + 3$$

$$30 = 10 \cdot 3$$

So gcd(156,93) = 3.

From the third division above, we can write  $3 = 63 - 2 \cdot 30$ . From the second division, we can write  $3 = 63 - 2 \cdot (93 - 63) = 3 \cdot 63 - 2 \cdot 93$ . And from the first division, we can write  $3 = 3 \cdot (156 - 93) - 2 \cdot 93 = 3 \cdot 156 - 5 \cdot 93$ . So x = 3 and y = -5.

- 6. (10 points)
- a) Find the base 8 expansion of  $(123)_{10}$ .

**Answer.**  $123 = 1 \cdot 64 + 7 \cdot 8 + 3 \cdot 1$ , so  $(123)_8 = 173$ .

b) Find the binary expansion of  $(123)_{10}$ 

**Answer.** Look at part (a). Each digit in the octal representation can be represented using three binary digits. So  $(1)_8 = (001)_2$ ,  $(7)_8 = (111)_2$ , and  $(3)_8 = (011)_2$ . Now concatenate them:  $(123)_10 = (173)_8 = (001111011)_2$ . Eliminating the leading 0's, the answer is  $(1111011)_2$ .

- 7. (20 points) By the Chinese Remainder Theorem for each integers a, b and c ( $0 \le a < 9$ ,  $0 \le b < 10$  and  $0 \le c < 11$ ) there is a unique nonnegative integer  $x < 990 = 9 \cdot 10 \cdot 11$  such that  $x \equiv a \pmod{9}$ ,  $x \equiv b \pmod{10}$  and  $x \equiv c \pmod{11}$ .
- a) Find such a, b and c for x = 801.

**Answer.** Dividing by 9, 10, and 11, we find a = 0, b = 1, c = 9.

b) Find an positive integer x satisfying  $x \equiv 1 \pmod{9}$ ,  $x \equiv 0 \pmod{10}$  and  $x \equiv 1 \pmod{11}$ **Answer.** We use the method described on p. 142, which gives a formula

$$x \equiv aM_1y_1 + bM_2y_2 + cM_3y_3 \pmod{m}$$

Here a = 1, b = 0, c = 1,  $m = 9 \cdot 10 \cdot 11$ ,  $M_1 = 10 \cdot 11 = 110$ ,  $M_2 = 9 \cdot 11 = 99$ ,  $M_3 = 9 \cdot 10 = 90$ . The numbers  $y_1$ ,  $y_2$  and  $y_3$  (so-called inverses) can be defined by:

$$110y_1 \equiv 1 \pmod{9}$$
  
 $99y_2 \equiv 1 \pmod{10}$   
 $90y_3 \equiv 1 \pmod{11}$ 

Use the Euclidean algorithms to find the inverses:

• For  $y_1$ , we have

$$110 = 12 \cdot 9 + 2 \\
9 = 4 \cdot 2 + 1$$

This means  $1 = 9 - 4 \cdot 2 = 9 - 4 \cdot (110 - 12 \cdot 9) = 49 \cdot 9 - 4 \cdot 110$ . So  $y_1 = -4 \equiv 5 \pmod{9}$ .

• For  $y_3$ , we have

$$90 = 8 \cdot 11 + 2$$

$$11 = 5 \cdot 2 + 1$$

This means  $1 = 11 - 5 \cdot 2 = 11 - 5 \cdot (90 - 8 \cdot 11) = 41 \cdot 11 - 5 \cdot 90$ . So  $y_3 = -5 \equiv 6 \pmod{11}$ . Finally

$$x \equiv aM_1y_1 + bM_2y_2 + cM_3y_3 \pmod{990}$$
  
 $\equiv 1 \cdot 110 \cdot 5 + 0 + 1 \cdot 90 \cdot 6 \pmod{990}$   
 $\equiv 550 + 540 \pmod{990}$   
 $\equiv 1090 \pmod{990}$   
 $\equiv 100 \pmod{990}$ 

We may take x = 100.