
CS 280 Prelim 1 Solutions October 7, 1999

Show all your work.

1. (15 points) Determine which of the following propositions are tautologies

a) (p → ¬p) ↔ ¬p b) (p → ¬q) ↔ ¬(p ∧ q) c) ((¬p ∧ q) → r) → ((¬q → p) → r).

Answer:

a) For all a, b, a → b is always equivalent to b ∨ ¬a. So p → ¬p is always equivalent to
¬p ∨ ¬p, which is clearly equivalent to ¬p. (Could also use a truth table).

b) The following truth table shows that (p → ¬q) ↔ ¬(p ∧ q) is indeed a tautology.
p q ¬q p → ¬q ¬(p ∧ q) (p → ¬q) ↔ ¬(p ∧ q)
0 0 1 1 1 1
0 1 0 1 1 1
1 0 1 1 1 1
1 1 0 0 0 1

c) The formula is not a tautology. It suffices to show one row in a truth table that assigns
0 to the whole formula:
p q r ¬p ∧ q ¬q → p (¬p ∧ q) → r (¬q → p) → r ((¬p ∧ q) → r) → ((¬q → p) → r)
1 0 0 0 1 1 0 0

2. (15 points)
a) Establish the logical equivalence of ¬∀x(A → B) and ∃x(A ∧ ¬B).
Answer: Put S ≡ ¬∀x(A → B). From the truth table, we know that A → B is equivalent to
¬A∨B, so S is equivalent to ¬∀x(¬A∨B). Also, by Table 3, p.33, we know this is equivalent
to ∃x¬(¬A ∨ B). Now using de Morgan’s rules, this becomes ∃x(A ∧ ¬B).

b) Show that ∃x(A(x) ∧ B(x)) and ∃xA(x) ∧ ∃xB(x) are not logically equivalent.
Answer: Let the universe of discourse be Z, the set of integers. Let A(x) ≡ “x is positive,”
and let B(x) ≡ “x is negative.” Then the first statement says that there exists an integer
which is both positive and negative, which is false. The second statement says that there
exists a positive integer and there exists a negative integer, which is true. So the two are not
equivalent.

3. (15 points) The composition of functions f and g, denoted by f ◦g, is defined by (f ◦g)(a) =
f(g(a)). The inverse of h is the function h−1 such that h−1◦h and h◦h−1 are identity functions,
i.e. (h−1 ◦ h)(a) = a and (h ◦ h−1)(b) = b for all a from the domain of h and all b from the
codomain of h.



a) Give an example of f and g such that f ◦ g and g ◦ f are different
Answer: Put f(x) = x + 1, and g(x) = x2. Then (f ◦ g)(x) = x2 + 1, whereas (g ◦ f)(x) =
(x + 1)2.

b) Suppose f and g are invertible. Show that (f ◦ g)−1 equals to g−1 ◦ f−1.
Answer: It suffices to demonstrate that

((f ◦ g) ◦ (g−1 ◦ f−1))(x) = x and ((g−1 ◦ f−1) ◦ (f ◦ g))(y) = y.

The cases are similar. We consider the first one only.

((f ◦ g) ◦ (g−1 ◦ f−1))(x) = (f ◦ g)((g−1 ◦ f−1)(x))
= f(g((g−1 ◦ f−1)(x)))
= f(g(g−1(f−1(x))))
= f((g ◦ g−1)(f−1(x)))
= f(f−1(x))
= (f ◦ f−1)(x)
= x

4. (10 points)
a) How many multiplications does the standard row-column algorithm uses to compute the
product of an m × n matrix and an n × p matrix? Explain why.
Answer: If A is m × n and B is n × p, and C = A · B, then

Cij =
n∑

k=1

AikBkj.

This formula involves n multiplications for each entry Cij . The matrix C has size mp, i.e.,
there are mp entries Cij , so the total number of multiplications is mnp.

b) Suppose you have to find A ·B ·C, were A is a 3× 10 matrix, B - 10× 50 matrix and C -
50 × 2 matrix. Which order of multiplication should you choose: (A · B) · C or A · (B · C)?
Answer: Count the number of multiplications in both ways:

(A · B) · C requires (3 · 10 · 50) + (3 · 50 · 2) = 1800

A · (B · C) requires (10 · 50 · 2) + (3 · 10 · 2) = 1060

The second way is faster.

5. (15 points) Compute the greatest common divisor (gcd) of 156 and 93. Find integers x
and y such that 156x + 93y = gcd(156, 93).



Answer. Use Euclid’s algorithm:

156 = 1 · 93 + 63
93 = 1 · 63 + 30
63 = 2 · 30 + 3
30 = 10 · 3

So gcd(156,93) = 3.
From the third division above, we can write 3 = 63− 2 · 30. From the second division, we

can write 3 = 63 − 2 · (93 − 63) = 3 · 63 − 2 · 93. And from the first division, we can write
3 = 3 · (156 − 93) − 2 · 93 = 3 · 156 − 5 · 93. So x = 3 and y = −5.

6. (10 points)
a) Find the base 8 expansion of (123)10.
Answer. 123 = 1 · 64 + 7 · 8 + 3 · 1, so (123)8 = 173.

b) Find the binary expansion of (123)10
Answer. Look at part (a). Each digit in the octal representation can be represented using
three binary digits. So (1)8 = (001)2, (7)8 = (111)2, and (3)8 = (011)2. Now concate-
nate them: (123)10 = (173)8 = (001111011)2 . Eliminating the leading 0’s, the answer is
(1111011)2 .

7. (20 points) By the Chinese Remainder Theorem for each integers a, b and c (0 ≤ a < 9,
0 ≤ b < 10 and 0 ≤ c < 11) there is a unique nonnegative integer x < 990 = 9 · 10 · 11 such
that x ≡ a(mod9), x ≡ b(mod10) and x ≡ c(mod11).

a) Find such a, b and c for x = 801.
Answer. Dividing by 9, 10, and 11, we find a = 0, b = 1, c = 9.

b) Find an positive integer x satisfying x ≡ 1(mod9), x ≡ 0(mod10) and x ≡ 1(mod11)
Answer. We use the method described on p. 142, which gives a formula

x ≡ aM1y1 + bM2y2 + cM3y3 (mod m)

Here a = 1, b = 0, c = 1, m = 9·10·11, M1 = 10·11 = 110, M2 = 9·11 = 99, M3 = 9·10 = 90.
The numbers y1, y2 and y3 (so-called inverses) can be defined by:

110y1 ≡ 1 (mod 9)
99y2 ≡ 1 (mod 10)
90y3 ≡ 1 (mod 11)

Use the Euclidean algorithms to find the inverses:



• For y1, we have

110 = 12 · 9 + 2
9 = 4 · 2 + 1

This means 1 = 9−4 ·2 = 9−4 · (110−12 ·9) = 49 ·9−4 ·110. So y1 = −4 ≡ 5 (mod 9).

• For y3, we have

90 = 8 · 11 + 2
11 = 5 · 2 + 1

This means 1 = 11−5 ·2 = 11−5 ·(90−8 ·11) = 41 ·11−5 ·90. So y3 = −5 ≡ 6 (mod 11).

Finally

x ≡ aM1y1 + bM2y2 + cM3y3 (mod 990)
≡ 1 · 110 · 5 + 0 + 1 · 90 · 6 (mod 990)
≡ 550 + 540 (mod 990)
≡ 1090 (mod 990)
≡ 100 (mod 990)

We may take x = 100.


