haracterizing Bipartite Graphs

Theorem: G is bipartite iff G has no odd-length cycles.

Proof: It's pretty easy to see that if a graph has an odd-length cycle then it can't be bipartite. (Suppose that you can partition the vertices into two sets V_1 and V_2 as required for bipartite and there is an odd length cycle $(x_0, x_1, \ldots, x_{2k}.x_0)$. Suppose without loss of generality that $x_0 \in V_1$. Then an easy induction argument shows that $x_{2i} \in V_1$ and $x_{2i+1} \in V_2$ for $0 = 1, \ldots, k$. But then the edge between x_{2k} and x_0 means that there is an edge between two nodes in V_1 , and this gives a contradiction.

Conversely, if G(V, E) has no odd-length cycles, we can partition the vertices in V into two sets by staring at an arbitrary vertex x_0 , putting it in V_0 , putting all the vertices you get to in one step from x_0 into V_1 , putting all the vertices you can get to in exactly 2 steps into V_0 , etc. It's not hard to prove that this construction works if G has no odd-length cycles (and fails if it has one).

This construction also gives us a polynomial-time algorithm for checking if a graph is bipartite.

Graph Isomorphism

When are two graphs that may look different when they're drawn, really the same?

Answer: $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ are isomorphic if they have the same number of vertices $(|V_1| = |V_2|)$ and we can relabel the vertices in G_2 so that the edge sets are identical.

- Formally, G_1 is isomorphic to G_2 if there is a bijection $f: V_1 \to V_2$ such that $\{v, v'\} \in E_1$ iff $(\{f(v), f(v')\} \in E_2$.
- Note this means that $|E_1| = |E_2|$

In general, it's very hard to tell if two graphs are isomorphic.

3

[You're not responsible for this for the prelim/final.]

2

Reachability

Is there a path in graph G from vertex v to v'?

- if the vertices in a graph correspond to towns, and v and v' are connected by an edge if there's a direct road link from v to v', then v is reachable from v' if there's a way of driving from v to v'
- in a communication network, reachability describes who can (ultimately) communicate with whom.

How can we test if one vertex is reachable from another?

A Useful Representation of a Graph

We can represent a graph G(V, E) by its adjacency matrix.

If $V = (v_1, \ldots, v_n)$, then the adjacency matrix is an $n \times n$ matrix.

- $A = (a_{ij})$, where $a_{ij} = 1$ if there is an edge from v_i to v_j ; otherwise $a_{ij} = 0$.
- in a multigraph, a_{ij} is the number of edges from i to j.

Example:

 $\begin{bmatrix} 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

5

Adjacency Matrices and Reachability

What does the adjacency matrix have do with reachability?

Theorem: Suppose A is the adjacency matrix of G and $A^m = (a_{ij}^{(m)})$. Then $a_{ij}^{(m)}$ is the number of paths of length m from v_i to v_j .

Proof: By induction on m. Let P(m) be the statement of the theorem. P(1) is immediate from the definition of the adjacency matrix. Assume P(m). Suppose $A^{m+1} = (a_{ij}^{(m+1)})$. By definition,

$$a_{ij}^{(m+1)} = \sum_{k=1}^{n} a_{ik}^{(m)} a_{kj}$$

- $a_{ik}^{(m)} = \#$ paths of length m from v_i to v_k
- $a_{kj} = \#$ edges (paths of length 1) from v_k to v_j
- Therefore $a_{ik}^{(m)}a_{kj} = \#$ paths from v_i to v_j of length m+1 whose second-last vertex (just before v_j) is v_k
- Therefore $a_{ij}^{(m+1)} = \sum_{k=1}^n a_{ik}^{(m)} a_{kj}$ is the total number of paths of length m+1 from v_i to v_j

Note:

- an undirected graph will have a symmetric adjacency matrix: $a_{ij} = a_{ji}$.
- the indegree of $v_i = \text{sum of entries in column } i$
- the outdegree of $v_i = \text{sum of entries in row } i$
- the adjacency matrix is a good way of representing a graph in a computer

6

- v_j is reachable from v_i iff there is a path of length $\leq n-1$ from v_i to v_j iff the ij in at least one of A, A^2, \ldots, A^{n-1} is 1 (where n = |V|).
- The ij entry of $A + A^2 + \cdots + A^n$ gives the total number of paths of length $\leq n$ from v_i to v_i .

Example:

$$A = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A^2 = AA = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 2 \\ 0 & 2 & 0 & 0 & 1 \end{bmatrix}$$

9

Tentative Prelim Coverage

• Chapter 0:

- \circ Sets
 - * Set builder notation
 - * Operations: union, intersection, complementation, set difference
- Relations:
 - * reflexive, symmetric, transitive, equivalence relations
- Functions
 - * Injective, surjective, bijective
- Important functions and how to manipulate them:
 - * exponent, logarithms, ceiling, floor, mod, polynomials
- Summation and product notation
- Matrices (especially how to multiply them)
- Proof and logic concepts
 - * logical notions $(\Rightarrow, \equiv, \neg)$
 - * Proofs by contradiction

A Better Algorithm

Each time we multiply two $n \times n$ matrices, we need n multiplications to compute the ij entry, and thus n^3 multiplications altogether

• There are theoretically better algorithms for matrix multiplication that take roughly $n^{2.5}$ multiplications

Thus, to compute A^1, \ldots, A^n , requires roughly n^4 multiplications

• Could cut this down to $n^3 \log(n)$

Warshall's algorithm gives an even better approach to computing reachability.

- I won't cover Warshall's algorithm in class. You can read about it in the text if you want, but it won't be on the prelim/final.
- You can also use Dijkstra's algorithm (which I will cover) to compute reachability efficiently.

10

• Chapter 1

- You do not have to write algorithms in their notation
- \circ You must be able to read algorithms in their notation
- o Procedures, recursion, recursive calls
- Loop invariants
- \circ Analysis of algorithms
 - * Relative ordering $(n^2 \text{ vs. } n \log n)$

• Chapter 2

- o induction vs. strong induction
- \circ guessing the right inductive hypothesis
- inductive (recursive) definitions

• Chapter 3

- terminology: bipartite, complete, degree, (Eulerian/Hamiltonian) path, tree, clique (number)
- o adjacency matrix
 - * three representations of a relation
- reachability

Transitive Closure

Recall that the $transitive\ closure$ of a relation R is the least relation R^* such that

- 1. $R \subset R^*$
- 2. R^* is transitive (so that if $(u, v), (v, w) \in R^*$, then so is (u, w)).

How are the graphs G(V, E) and $G^*(V, E^*)$ corresponding to R and R^* related?

• G^* is the result of putting an edge between u and v is there's a path from u to v in G

How do we prove this?

- \circ Let $G_k(V, E_k)$ be such that there is an edge $(v, v') \in E_k$ iff there is a path of length $\leq k$ in the original graph G.
- \circ Let R_k be the relation corresponding to G_k .
- \circ Note that $R_1 = R$. Prove by induction that $R_k \subseteq R^*$ for all k. Then show that R_{n-1} is transitively closed, so $R_{n-1} = R^*$.

13

Dijkstra's Algorithm: Key Idea

Suppose we want to find the shortest path from v_0 to v_n .

Generalize: Find the shortest path from v_0 to every other vertex.

How?

- First find the closest vertex and the path to it, then the next closest, and so on.
- Sooner or later v_n will be the next vertex added.

Shortest Paths

Suppose you have a graph with weights on the edges. (Think of the weights as driving times.) You want to find the minimum length path.

- if there are no weights on the edges, think of this as the special case where all the weights are 1.
- let len(u, v) be the weight of the edge (u, v) ($len(u, v) = \infty$ if there is no edge from u to v).

Could do it by brute force:

- If there are *n* vertices, find all paths with no repeated vertices, and compute their weight.
- There could be as many as (n-2)! paths!

Can we do better?

14

Why does this help?

• Can compute the next closest vertex recursively.

How do we find the vertex closest to v_0 ?

• Easy: just look

If $U = \{u_0, u_1, \dots, u_k\}$ are the k closest vertices to v_0 (listed in order, with $u_0 = v_0$), how do we find u_{k+1} ?

Suppose v is the next-closest vertex:

- The shortest path from v_0 to v must go through $\{u_1, \ldots, u_k\}$
 - \circ If it got to v through some other vertex, that vertex would be closer to v_0 than v!
- That means the minimum length path from v_0 to v must have length

$$d(v) = \min_{j=0}^k (d(u_j) + len(u_j, v)) \quad (*)$$

 $len(u_j, v)$ is the weight of the edge from u_j to v

• Compute (*) for each vertex not in U, and pick the shortest.

Dijkstra's Algorithm: Outline

At kth step of the algorithm, assume (inductively) we have:

- u_1, \ldots, u_k , the k closest vertices to v_0 (not counting v_0 itself)
- $d(u_i)$ (the minimum distance from v_0 to u_i)
- the minimum distance $d_k(v)$ from v_0 to any vertex v, going on path that involve only u_1, \ldots, u_k

At the (k+1)st step:

• for every vertex v connected to u_k , compute

$$d(u_k) + len(u_k, v)$$

- If this is better than $d_k(v)$, then let this be $d_{k+1}(v)$; otherwise $d_{k+1}(v) = d_k(v)$
- pick the (k+1)st closest vertex

 $k \ d(v_1) \ d(v_2) \ d(v_3) \ d(v_4) \ d(v_5) \ d(v_6) \ d(v_7)$ New 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ v_0 2 4 ∞ ∞ ∞ ∞ ∞ v_1

Dijkstra's Algorithm: Example

3 2 4 5 5 ∞ v_3 4 2 4 5 5 6 10 10 v_4 2 4 5 6 5 5 8 9 v_5 2 7 9 6 4 5 5 6 v_6 2

5

6

 ∞

 ∞

7

 ∞

8

 v_2

 v_7

2 2 4

4

5

5

17

Dijsktra's Algorithm

Input G(V, E)[a graph] v_0, v_n [start and end]

Algorithm Shortest Path

$$\begin{array}{lll} d(v_0) \leftarrow 0 & [\text{Initialize distance from } v_0] \\ \textbf{for } i = 1 \ \textbf{to} \ n & [n = |V|] \\ d(v_i) \leftarrow \infty & \\ \textbf{endfor} \\ U \leftarrow \{v_0\} & [\text{Initialize closest vertices}] \\ u \leftarrow v_0 & [u \ \text{is most recent entry into } v] \\ \textbf{repeat until } u = v_n \\ \textbf{for } i = 1 \ \textbf{to} \ n \\ & \quad \textbf{if } (u,v_i) \in E \ \text{and } v_i \notin U, \ \textbf{then} \\ & \quad d(v_i) \leftarrow \min(d(v_i),d(u) + len(u,v_i)) \\ \textbf{endfor} \\ & \quad mindist \leftarrow \infty \quad [\text{find next closest vertex}] \\ \textbf{for } i = 1 \ \textbf{to} \ n \\ & \quad \textbf{if } v_i \notin U \ \text{and } d(v_i) < mindist \ \textbf{then} \\ & \quad mindist \leftarrow d(v_i); \ u \leftarrow v_i \\ \textbf{endfor} \\ & \quad U \leftarrow U \cup \{u\} \\ \textbf{endrepeat} \end{array}$$

18