Binary Search

Theorem: Binary search takes at most $\lfloor \log_2(n) \rfloor + 1$ loop iterations on a list of n items.

Proof: Let P(n) be the statement that if $L - F = n \ge 0$, then we go through the loop at most $\lfloor \log_2(L+1-F) \rfloor + 1$ times.

Basis: If L - F = 0, then we go through the loop at most once (0 times if the $w = w_i$ is actually on the list), and $\log_2(1) + 1 = 1$.

Inductive step: Assume $P(0), \ldots, P(n)$. If L - F = n + 1, then either $w = w_{\lfloor (F+L)/2 \rfloor}$ (in which case we quit), or (a) $w < w_{\lfloor (F+L)/2 \rfloor}$ or (b) $w > w_{\lfloor (F+L)/2 \rfloor}$. Let L', F' be values of L and F on the next iteration.

In case (a),
$$L' = \lfloor (F+L)/2 \rfloor - 1$$
, $F' = F$, so $L' + 1 - F' = \lfloor (F+L)/2 \rfloor - F = \lfloor (L-F)/2 \rfloor$
In case (b) $F' = \lfloor (F+L)/2 \rfloor + 1$, $L' = L$, so $L' + 1 - F' = L - \lfloor (F+L)/2 \rfloor = \lceil (L-F)/2 \rceil$

Either way, by strong induction, it takes at most

$$1 + |\log_2(\lceil (L - F)/2 \rceil)| + 1$$

times through the loop. (One more than it takes starting at (L', F').

Two facts about the floor function:

- $\lfloor x/2 \rfloor \leq \frac{x}{2} + \frac{1}{2}$ if x is an integer
- 1 + |x| = |1 + x| for all $x \in R$

Therefore:

$$\begin{aligned} &1 + \lfloor \log_2(\lceil (L-F)/2 \rceil) \rfloor + 1 \\ &\leq 1 + \lfloor \log_2((L+1-F)/2) \rfloor + 1 \\ &= \lfloor 1 + \log_2(L+1-F)/2) \rfloor + 1 \\ &= \lfloor \log_2(2) + \log_2(L+1-F)/2) \rfloor + 1 \\ &= \lfloor \log_2(L+1-F) \rfloor + 1 \end{aligned}$$

This is what we wanted to prove!

Suppose we wanted to sort n items. Here's one way to do it:

Bubble Sort

Input n [number of items to be sorted] w_1, \ldots, w_n [items]

Algorithm BubbleSort

$$\begin{array}{l} \textbf{for} \ i=1 \ \text{to} \ n-1 \\ \ \textbf{for} \ j=1 \ \text{to} \ n-i \\ \ \ \textbf{if} \ w_j>w_{j+1} \ \textbf{then} \ \text{switch}(w_j,w_{j+1}) \ \textbf{endif} \\ \ \textbf{endfor} \\ \end{array}$$

Why is this right:

• Intuitively, because highest elements "bubble up" to the top

How many comparisons?

 \bullet Best case, worst case, average case all the same:

$$\circ (n-1) + (n-2) + \cdots + 1 = n(n-1)/2$$

2

Proving Bubble Sort Correct

We want to show that the algorithm is correct by induction. What's the statement of the induction?

P(k) is the statement that after k iterations of the outer loop, w_{n-k+1}, \ldots, w_n are the k highest items, sorted in the right order.

Basis: How do we prove P(1)? By a nested induction!

This time, take Q(l) to be the statement that after l iterations of the inner loop, w_{l+1} is higher than $\{w_1, \ldots, w_l\}$.

Basis: Q(1) holds because after the first iteration of the inner loop, $w_2 > w_1$ (thanks to the switch statement).

Inductive step: After l iterations, the algorithm guarantees that $w_{l+1} > w_l$. Using the induction hypothesis, w_{l+1} is also higher than $\{w_1, \ldots, w_{l-1}\}$.

Q(n-1) implies P(1), so we're done with the base case of the main induction.

[Note: For a really careful proof, we need better notation (for value of w_l before and after the switch).]

Inductive step (for main induction): Assume P(k). By the subinduction, after n-k-1 iterations of the inner loop, w_{n-k} is alphabetically after $\{w_1, \ldots, w_{n-(k+1)}\}$. Combined with P(k), this tells us w_{n-k}, \ldots, w_n are the k+1 highest elements. This proves P(k+1).

Example

5

Suppose $a_1 = 1$ and $a_n = a_{\lceil n/2 \rceil} + a_{\lfloor n/2 \rfloor}$ for n > 1. Find an explicit formula for a_n .

Try to see the pattern:

- $a_1 = 1$
- \bullet $a_2 = a_1 + a_1 = 1 + 1 = 2$
- $a_3 = a_2 + a_1 = 2 + 1 = 3$
- $\bullet \ a_4 = a_2 + a_2 = 2 + 2 = 4$

Suppose we modify the example. Now $a_1 = 3$ and $a_n = a_{\lceil n/2 \rceil} + a_{\lceil n/2 \rceil}$ for n > 1. What's the pattern?

- $a_1 = 3$
- $a_2 = a_1 + a_1 = 3 + 3 = 6$
- $\bullet \ a_3 = a_2 + a_1 = 6 + 3 = 9$
- $\bullet \ a_4 = a_2 + a_2 = 6 + 6 = 12$

 $a_n = 3n!$

How to Guess What to Prove

Sometimes formulating P(n) is straightforward; sometimes it's not. This is what to do:

- Compute the result in some specific cases
- Conjecture a generalization based on these cases
- Prove the correctness of your conjecture (by induction)

Theorem: If $a_1 = k$ and $a_n = a_{\lceil n/2 \rceil} + a_{\lfloor n/2 \rfloor}$ for n > 1, then $a_n = kn$ for $n \ge 1$.

6

Proof: By strong induction. Let P(n) be the statement that $a_n = kn$.

Basis: P(1) says that $a_1 = k$, which is true by hypothesis.

Inductive step: Assume $P(1), \ldots, P(n)$; prove P(n+1).

$$\begin{array}{l} a_{n+1} &= a_{\lceil (n+1)/2 \rceil} + a_{\lfloor (n+1)/2 \rfloor} \\ &= k \lceil (n+1)/2 \rceil + k \lfloor (n+1)/2 \rfloor [\text{Induction hypothesis}] \\ &= k (\lceil (n+1)/2 \rceil + \lfloor (n+1)/2 \rfloor) \\ &= k (n+1) \end{array}$$

We used the fact that $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$ for all n (in particular, for n+1). To see this, consider two cases: n is odd and n is even.

- if n is even, $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n/2 + n/2 = n$
- if n is odd, suppose n = 2k + 1• $\lceil n/2 \rceil + \lceil n/2 \rceil = (k+1) + k = 2k + 1 = n$

This proof has a (small) gap:

• We should check that $\lceil (n+1)/2 \rceil \leq n$

In general, there is no rule for guessing the right inductive hypothesis. However, if you have a sequence of numbers

$$r_1, r_2, r_3, \ldots$$

and want to guess a general expression, here are some guidelines for trying to find the *type* of the expression (exponential, polynomial):

- Compute $\lim_{n\to\infty} r_{n+1}/r_n$
 - o if it looks like $\lim_{n\to\infty} r_{n+1}/r_n = b \notin \{0,1\}$, then r_n probably has the form $Ab^n + \cdots$.
 - You can compute A by computing $\lim_{n\to\infty} r_n/b^n$
 - Try to compute the form of \cdots by considering the sequence $r_n Ab^n$; that is,

$$r_1 - Ab, r_2 - Ab^2, r_3 - Ab^3, \dots$$

- $\lim_{n\to\infty} r_{n+1}/r_n = 1$, then r_n is most likely a polynomial.
- $\lim_{n\to\infty} r_{n+1}/r_n=0$, then r_n may have the form $A/b^{f(n)}$, where $f(n)/n\to\infty$
 - $\circ f(n)$ could be $n \log n$ or n^2 , for example

Once you have guessed the form of r_n , prove that your guess is right by induction.

9

One more example

Find a formula for

$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)}$$

Some values:

- $r_1 = 1/4$
- \bullet $r_2 = 1/4 + 1/28 = 8/28 = 2/7$
- $r_3 = 1/4 + 1/28 + 1/70 = (70 + 10 + 4)/280 = 84/280 = 3/10$

Conjecture: $r_n = n/(3n+1)$. Let this be P(n).

Basis: P(1) says that $r_1 = 1/4$.

Inductive step:

$$\begin{array}{l} r_{n+1} &= r_n + \frac{1}{(3n+1)(3n+4)} \\ &= \frac{n}{3n+1} + \frac{1}{(3n+1)(3n+4)} \\ &= \frac{n(3n+4)+1}{(3n+1)(3n+4)} \\ &= \frac{3n^2+4n+1}{(3n+1)(3n+4)} \\ &= \frac{(n+1)(3n+1)}{(3n+1)(3n+4)} \\ &= \frac{n+1}{3n+4} \end{array}$$

More examples

Come up with a simple formula for the sequence

Compute limit of r_{n+1}/r_n :

$$5/1 = 5$$
, $13/5 \approx 2.6$, $41/13 \approx 3.2$, $121/41 \approx 2.95$, ..., $29525/9841 \approx 3.000$

Guess: limit is $3 (\Rightarrow r_n = A3^n + \cdot)$

Compute limit of $r_n/3^n$:

$$1/3 \approx .33, \ 5/9 \approx .56, \ 13/27 \approx .5, 41/81 \approx .5, \dots, 29525/3^{10} \approx .5000$$

Guess: limit is 1/2 ($\Rightarrow r_n = \frac{1}{2}3^n + \cdots$)+

Compute $r_n - 3^n/2$:

$$(1-3/2), (5-9/2), (13-27/2), (41-81/2), \dots$$

= $-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \dots$

Guess: general term is $3^n/2 + (-1)^n/2$

Verify (by induction ...)

10

Faulty Inductions

Part of why I want you to write out your assumptions carefully is so that you don't get led into some standard errors.

Theorem: All women are blondes.

Proof by induction: Let P(n) be the statement: For any set of n women, if at least one of them is a blonde, then all of them are.

Basis: Clearly OK.

Inductive step: Assume P(n). Let's prove P(n+1).

Given a set W of n+1 women, one of which is blonde. Let A and B be two subsets of W, each of which contains the known blonde, whose union is W.

By the induction hypothesis, each of A and B consists of all blondes. Thus, so does W. This proves $P(n) \Rightarrow P(n+1)$.

Take W to be the set of women in the world, and let n = |W|. Since there is clearly at least one blonde in the world, it follows that all women are blonde!

Where's the bug?

[The result is true, but the following proof is not:]

Proof: By strong induction. Let P(n) be the statement that n has a unique factorization, for n > 1.

Theorem: Every integer > 1 has a unique prime

Basis: P(2) is clearly true.

factorization.

Induction step: Assume $P(2), \ldots, P(n)$. We prove P(n+1). If n+1 is prime, we are done. If not, it factors somehow. Suppose n+1=rs r,s>1. By the induction hypothesis, r has a unique factorization $\Pi_i p_i$ and s has a unique prime factorization $\Pi_j q_j$. Thus, $\Pi_i p_i \Pi_j q_j$ is a prime factorization of n+1, and since none of the factors of either piece can be changed, it must be unique.

What's the flaw??

13

14

Problem: Suppose n+1=36. That is, you've proved that every number up to 36 has a unique factorization. Now you need to prove it for 36.

36 isn't prime, but $36 = 3 \times 12$. By the induction hypothesis, 12 has a unique prime factorization, say $p_1p_2p_3$. Thus, $36 = 3p_1p_2p_3$.

However, 36 is also 4×9 . By the induction hypothesis, $4 = q_1q_2$ and $9 = r_1r_2$. Thus, $36 = q_1q_2r_1r_2$.

How do you know that $3p_1p_2p_3 = q_1q_2r_1r_2$. (They do, but it doesn't follow from the induction hypothesis.)

This is a breakdown error. If you're trying to show something is unique, and you break it down (as we broke down n+1 into r and s) you have to argue that nothing changes if we break it down a different way. What if n+1=tu?

 \bullet The actual proof of this result is quite subtle

Theorem: The sum of the internal angles of a regular n-gon is 180(n-2) for $n \ge 3$.

Proof: By induction. Let P(n) be the statement of the theorem. For n=3, the result was shown in high school. Assume P(n); let's prove P(n+1). Given a regular (n+1)-gon, we can lop off one of the corners:

By induction, the sum of the internal angles of the n-gon is 180(n-2) degrees; the sum of the internal angles of the triangle is 180 degrees. Thus, the internal angles of the original (n+1)-gon is 180(n-1). What's wrong??

• When you lop off a corner, you don't get a regular n-gon.

The fix: Strengthen the induction hypothesis.

• Let P(n) say that the sum of the internal angles of any n-gon is 180(n-2).

15

Consider 0-1 sequences in which 1's may not appear consecutively, except in the rightmost two positions.

• 010110 is not allowed, but 010011 is

Prove that there are 2^n allowed sequences of length n for $n \ge 1$

Why can't this be right?

"**Proof**" Let P(n) be the statement of the theorem.

Basis: There are 2 sequences of length 1—0 and 1— and they're both allowed.

Inductive step: Assume P(n). Let's prove P(n+1). Take any allowed sequence x of length n. We get a sequence of length n+1 by appending either a 0 or 1 at the end. In either case, it's allowed.

• If x ends with a 1, it's OK, because x1 is allowed to end with 2 1's.

Thus, $s_{n+1} = 2s_n = 22^n = 2^{n+1}$.

Where's the flaw?

• What if x already ends with 2 1's?

Correct expression involves separating out sequences which end in 0 and 1 (it's done in Chapter 5, but I'm not sure we'll get to it)

17

Example

Theorem n is odd iff n^2 is odd, for $n \in N^+$.

Proof: We have to show

1. $n \text{ odd} \Rightarrow n^2 \text{ odd}$

 $2. n^2 \text{ odd} \Rightarrow n \text{ odd}$

For (1), if n is odd, it is of the form 2k + 1. Hence,

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Thus, n^2 is odd.

For (2), we proceed by contradiction. Suppose n^2 is odd and n is even. Then n=2k for some k, and $n^2=4k^2$. Thus, n^2 is even. This is a contradiction. Thus, n must be odd.

Methods of Proof

Typically you're trying to prove a statement like "Given X, prove (or show that) Y". This means you have to prove

$$X \Rightarrow Y$$

In the proof, you're allowed to assume X, and then show that Y is true, using X.

• A special case: if there is no X, you just have to prove Y or $true \Rightarrow Y$.

Alternatively, you can do a proof by contradiction: Assume that Y is false, and show that X is false.

• This amounts to proving

$$\neg Y \Rightarrow \neg X$$

18

A Proof By Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof: By contradiction. Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = a/b$ for some $a, b \in N^+$. We can assume that a/b is in lowest terms.

• Therefore, a and b can't both be even.

Squaring both sides, we get

$$2 = a^2/b^2$$

Thus, $a^2 = 2b^2$, so a^2 is even. This means that a must be even.

Suppose a = 2c. Then $a^2 = 4c^2$.

Thus, $4c^2 = 2b^2$, so $b^2 = 2c^2$. This means that b^2 is even, and hence so is b.

Contradiction!

Thus, $\sqrt{2}$ must be irrational.

A Bad Proof

Prove $\log(x/y) = \log(x) - \log(y)$

Proof:

$$\begin{aligned} \log(x/y) &= \log(x) - \log(y) \\ \log(x) &+ \log(1/y) = \log(x) - \log(y) \\ \log(x) &+ \log(y^{-1}) = \log(x) - \log(y) \\ \log(x) &- \log(y) = \log(x) - \log(y) \end{aligned}$$

What's wrong?

 \bullet You need to connect the statements (using $\Leftrightarrow,$ for example)