
1

Writing a
Design Document

&
How Recursive Functions

are Implemented

Week 8
CS 212 – Spring 2008

Announcements

! Project Part 3
" Online by tomorrow afternoon for both Compiler & GBA
" Design Document is due on Thursday, March 27
" Part 3 code is due near Thursday, April 10

Software Life Cycle (Again)

! Problem specification
! Program design
! Choosing algorithms & data

structures
! Coding & debugging
! Testing & verification
! Support & maintenance

Requirements Analysis

Implementation & Test

Acceptance Test

Production

Modification & Maintenance

Design

Program Design

! Specify a set of components
that will solve the specified
problem

! Component?
" Depends on the language

we’re using
" Typically: function,

procedure, class, template,
package, or interface

! Design is a Divide & Conquer
operation

" Break problem into smaller
and simpler subproblems

Specifying a Component

! Interface
" How this component is invoked

! Preconditions
" The conditions that must be true for this unit to work

correctly
! Postconditions

" The conditions that will be true when the component
finishes (assuming the preconditions are met)

Top-Down Design

! Based on subdividing by task (i.e., by function)
" Example is from

“Modern Software Development using Java” by Tymann & Schneider

Banking Simulator

Arrivals Departures Transactions Print Results

Input Transaction Validate Process Deposit Process Withdrawal

2

Criticism of Top-Down (Function-Oriented) Design

! What if we want to add a new type of transaction?
" Say, make-loan-payment
" Which components are affected?

Banking Simulator

Arrivals Departures Transactions Print Results

Input Transaction Validate Process Deposit Process Withdrawal

Criticism of Top-Down (Function-Oriented) Design

! What if we want to add a new type of transaction?
" Say, make-loan-payment
" Which components are affected?

Banking Simulator

Arrivals Departures Transactions Print Results

Input Transaction Validate Process Deposit Process Withdrawal

Object-Oriented Design

! Decompose problem via entities (i.e., objects)
instead of by function

" For the banking simulation, we might have
Customers
Waiting lines
Tellers
Transactions

! We then determine the methods for each class

Specifying Classes & Methods
Class WaitingLine

putAtEnd(c) Put new customer at end of line
c = getFirstCustomer() Remove & return 1st customer in line
isEmpty() True iff line is empty
isFull() True iff line is full

Class Teller
isBusy() True iff teller is busy
serve(c) Teller begins serving customer c

Class Customer
depart() The customer leaves the bank
t = getTransaction() Return customer’s desired transaction

Class Transaction
t = transactionType() Return the type of this transaction
a = transactionAmount() Return dollar amount of transaction

What to Put in Your Design Document
! Specify each class

" For each class, specify the class’s methods
For each method, specify

! Its arguments (i.e., its interface)
! Its preconditions (if any)
! Its postconditions (i.e., what the method does)

! Specify how the classes interact
" Diagrams can be useful here, but aren’t required

UML (Unified Modeling Language) can be used, but informal
diagrams are OK, too

! Expected length of design document
" One page ⇒ probably too short
" Ten pages ⇒ definitely too long

Recursive Functions

3

Positive Integer Powers

! an = a·a·a···a (n times)

! Alternate description:
" a0 = 1
" an+1 = a·an

static int power(int a, int n) {
if (n = = 0) return 1;
else return a*power(a,n-1);

}

A Smarter Version
! Power computation:

" a0 = 1
" If n is nonzero and even, an = (an/2)2

" If n is odd, an = a·(an/2)2

Java note: If x and y are integers, “x/y” returns the integer part of
the quotient

! Example:
a5 = a·(a5/2)2 = a·(a2)2 = a·((a2/2)2)2 = a·(a2)2

Note: this requires 3 multiplications rather than 5

! What if n were larger?
" Savings would be more significant

! This is much faster than the straightforward computation
" Straightforward computation: n multiplications
" Smarter computation: log(n) multiplications

Smarter Version in Java
! n = 0: a0 = 1
! n nonzero and even: an = (an/2)2

! n nonzero and odd: an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

parameters
local variable

!The method has two parameters and a local variable
!Why aren’t these overwritten on recursive calls?

! Key idea:
" Use a stack to remember parameters and local variables

across recursive calls
" Each method invocation gets its own stack frame

! A stack frame contains storage for
" Local variables of method
" Parameters of method
" Return info (return address and return value)
" Other bookkeeping info

Implementation of Recursive Methods

Stack Frame
! A new stack frame is

pushed with each
recursive call

! The stack frame is
popped when the method
returns

" Leaving a return value
(if there is one) on top
of the Stack

a stack frame

return info

local variables

parameters

Example: power(2, 5)

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 1

(hP =) ?

return info

(a =) 2
(n =) 5
(hP =) 4

return info

(a =) 2
(n =) 5
(hP =) ?

return info

(a =) 2
(n =) 2
(hP =) 2

return info

(a =) 2
(n =) 5
(hP =) ?

return info

(a =) 2
(n =) 2
(hP =) ?

return info

(a =) 2
(n =) 1
(hP =) 1

(retval =) 1

(retval =) 2

(retval =) 4

(retval =) 32

4

How Do We Keep Track?
! At any point in execution,

many invocations of power
may be in existence

" Many stack frames (all for
power) may be in Stack

" Thus there may be several
different versions of the
variables a and n

! How does processor know
which location is relevant at
a given point in the
computation?

! Answer:
Frame Base Register

" When a method is invoked,
a frame is created for that
method invocation, and FBR
is set to point to that
frame

" When the invocation
returns, FBR is restored to
what it was before the
invocation

! How does machine know
what value to restore in the
FBR?

" This is part of the return
info in the stack frame

FBR
! Computational activity takes

place only in the topmost (most
recently pushed) stack frame

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 5

(hP =) ?

return info

(a =) 2
(n =) 2

(hP =) ?

return info

(a =) 2
(n =) 1

(hP =) ?

FBR FBR FBR

old FBR

old FBR

old FBR

old FBRold FBR old FBR

Basic Idea for Functions
! A new frame (on the stack)

is created for each function
call

" We use the FBR (Frame
Base Register) to indicate
the current frame

" When a function returns it
should “clean up” its frame

frame
for A

direction of
stack growth

FBR

frame
for
main

frame
for A

What’s Kept in a Frame?
! We already have this

principle:
" When an expression is

evaluated, the result is
left on top of the stack

! What should be left on the
stack after a function call?

! We know we have to change
the FBR for each new frame

" What do we do with the
old FBR?

return value

a frame

return value

a frame saved FBR

What Else is Kept in a Frame?
! Another principle:

" Every time a function is
called, it has its own local
variables

! Thus it makes sense to keep
a function’s local variables in
its frame

! The parameters of a
function are also “local
variables”

" They can be kept in the
frame, too

return value

a frame saved FBR

local variables

return value

a frame saved FBR

local variables

parameters

Is That It? Nothing Else in a Frame?
! Well, no; there’s one more

thing…
! We’re using assembly

language
" If we want to jump

somewhere and then come
back then we must
remember where to come
back to

Instructions

Stack

In
st

ru
ct

io
ns

fo
r

m
ai

n
In

st
ru

ct
io

ns
fo

r
A

JUMP A

JUMP ??

A:

5

How Do We Jump Back?
! We can store the return

address (i.e., a saved PC value)
in the frame, too

! We have provided SAM
instructions to store and
restore the PC

JSR address
push PC+1 onto stack; set PC

to address
Jump to SubRoutine

JUMPIND
set PC to value on top of

stack
JUMP INDirect

! We also have instructions to
save and restore the FBR

LINK
push value of FBR onto stack;

set FBR to SP-1
UNLINK

set value of FBR to value on
top of stack

return value

a frame saved FBR

local variables

parameters

saved PC

Creating a Frame
! Responsibility for creating a

frame is shared by the caller
(calling code) and the callee
(the function’s code)

! Caller’s responsibilities
" Push space for return value
" Push arguments
" Create new frame (use LINK =

push current FBR and set FBR
to SP–1)

" JSR to callee (push PC+1 and
jump to callee)

! Callee’s responsibilities
" Reserve space for local

variables
" Continue with callee’s code

return value

a frame saved FBR

local variables

parameters

saved PC

Clearing a Frame (Clean-up)
! Responsibility for clearing a

frame is shared by the callee
(the function’s code) and the
caller (calling code)

! Callee’s responsibilities
" Clear local variables from

stack
" JUMPIND to caller (clear the

saved PC and jump back to
calling code)

! Caller’s responsibilities
" Restore the FBR (UNLINK)
" Clear the arguments from

stack
" Note: return value remains on

stack

return value

a frame saved FBR

local variables

parameters

saved PC

Access to Frame’s Data
! Data stored in the frame are

accessed via offset from the
FBR

" Let p be the number of
parameters

The first local variable
" STOREOFF 2

The second local variable
" STOREOFF 3

The first parameter
" STOREOFF –p

The second parameter
" STOREOFF –p + 1

The return value
" STOREOFF –p – 1

return value

a frame saved FBR

local variables

parameters

saved PC

An Example
int factorial (int n) : :

if n < 2 then return 1;
else return n * factorial(n-1);
endif

end

factorial: PUSHOFF -1
PUSHIMM 2
LESS
JUMPC true
JUMP false
true: PUSHIMM 1
STOREOFF -2 // Store return value
JUMPIND // Return
false: PUSHOFF -1
ADDSP 1 // Space for return value
PUSHOFF -1
PUSHIMM 1
SUB // Argument is now on stack
LINK // Create new stack frame
JSR factorial // Call the function
UNLINK // Restore FBR
ADDSP -1 // Clear the argument
TIMES
STOREOFF -2 // Store return value
JUMPIND // Returnreturn value

factorial’s
frame

saved FBR
n

saved PC

return value

a frame saved FBR

local variables

parameters

saved PC

Example Calling Code
program:
ADDSP 1 // Space for return value
PUSHIMM 5 // The argument
LINK // Create new stack frame
JSR factorial // Call the function
UNLINK // Restore FBR
ADDSP -1 // Clear the argument
WRITE // Write result
STOP

! We need this “calling
code” to help create
factorial’s initial frame

