
Chapter 3: Functions

3.1 Introduction
The previous chapter assumed that all of your Bali code would be written inside a sole main
function. But, as you have learned from previous programming courses, modularizing code
produces clearer, more reusable code. This chapter introduces translating functions to Samcode.
If all you want are the templates for Samcode and functions, jump ahead to Section 4.

3.2 Background
This section provides some reminders and some terminology with which you might not be
familiar.

3.2.1 Functions

Although you are well acquainted with functions from your programming courses, recall that
assembly programming requires “low-level” thinking. So, first you should review some quick
higher-level concepts, below:

• Purpose: Functions encapsulate procedural information. Actually, there are terminology
differences for subroutine, function, procedure, and method. We will stick to function. For
specific definitions, investigate http://foldoc.doc.ic.ac.uk/foldoc/index.html.

• Structure: A function has a header (or signature) and body (or, primary block).
• Control flow and call order: When encountering a function call, the code that contains

the function call (as an expression and/or statement) is the caller. The function being
called is the callee. We will use this terminology when writing Samcode for a function.
Note that the function body is associated with the callee, and the function signature is
associated with the function header.

• Scope: The grammar we have provided follows a mostly standard approach in which a
programmer can declare local variables “inside” a function. So, each function can reuse
variable names without interfering with variable names elsewhere in the code. A global
variable is visible to the entire program and should be treated with care. Note that Java
does not have a global variable, though static fields roughly provide a similar
functionality.

• Parameters: Although it may seem obvious, remember that the caller passes actual
arguments to a function’s formal parameters, which are declared by the callee. In
general, we will use the condensed term parameter. You will treat parameters differently
than local variables (callee’s scope) because actual arguments (from the caller) are passed
to the parameters (in the callee).

• Recursion: A recursive function can call itself. Why the reminder? You need to treat each
function call as a separate invocation, as if you have invoked another function that just
happens to use the same code.

• More? There are issues of overloading and overriding. Recall that an overloaded function
uses the same as another function, whereas an overriden function redefines a function for a
particular subclass.
1/15

http://foldoc.doc.ic.ac.uk/foldoc/index.html
http://foldoc.doc.ic.ac.uk/foldoc/index.html

Chapter 3: Functions 2/15
In the next section, we review the notion of the Stack, which provides a structure with which
functions can be implemented with the above features.

3.2.2 The Stack

The Stack (or, call stack) is a data structure in which information about a function and its data is
stored. We usually model the stack as a collection of frames, which are subdivisions of the stack,
as shown in Figure 1.1. Each time you call a function, another frame is added to the top of the
stack, resulting in bottom-up construction.

For now, you can split each frame into a collection of cells, each having a unique address, as
shown in Figure 1.2. For SaM, the first cell has address zero and works upwards using integers.
Each cell stores a value. Refer to Chapter 1 for specific cell types and values.

Each frame contains an assembly translation of the data associated with a function’s code and
operation, all of which stored in cells: a return variable, parameters, administrative information,

Figure 1.1: The Stack

Figure 1.2: Frames and Cells

frame

direction of
stack growth

direction of
stack growth

cell

frame

Chapter 3: Functions 3/15
local variables, and data used by expressions. This assignment will take you step-by-step through
the construction process.

3.2.3 Registers (Revisited)

Recall from Chapter 1 that SaM models not just memory needed for functions and classes, but
smaller portions of a CPU’s main memory. These small areas are registers, which usually hold
administrative information. For SaM, the registers store integers with which you can conveniently
consider as memory addresses. Since a register can store an integer address, you can think of the
register as pointing to the cell/memory location with the address in that register’s memory. For
this assignment, we use three registers, which were introduced in Chapter 1:

• SP (Stack Pointer): address of next free cell on stack.
• FBR (Frame Based Register): address of current frame, which is discussed in great detail

in this assignment.
• PC (Program Counter): Label of current Samcode instruction to process. SaM stores all

loaded Samcode instructions from your input SaM file in a data structure, which has
integer address. The PC is also reviewed in more detail later in this assignment.

In general, the administrative portions of each frame will use other registers to help keep track of
the current frame and control from caller to callee back to caller.

3.2.4 Caller and Callee

We have just a bit more to explain before delving into Samcode. The construction and destruction
of each frame is a collaborative process between the caller and callee of a function. Refer to
Figure 1.3. Since the caller has to call the callee (“-ers” precede “-ees”), the caller fills the first
part of each frame. Then, the callee takes over and fills in the rest. As a function finishes, the
callee removes its data from the frame, followed by the caller doing the same until the frame is
utterly destroyed.

3.3 Frame Structure
This section explains the model that we use to translate Bali functions into Samcode. We will start
with the bottom of the frame (the caller cells) and work our way to the top (the callee cells). So,
there will be a focus on constructing a frame. We weave the explanation of frame destruction into
both the caller and callee development because of the collaborative process.

Figure 1.3: Caller/Callee Collaboration

direction of
stack growth “caller” “caller”

“callee”
direction of

stack destruction

“caller”

Chapter 3: Functions 4/15
3.3.1 Return Value

Bali functions always return something. So, we need a consistent place in each frame to store the
return value (sometimes interchanged with return variable and rv) of each function. In fact, the
expression in caller that calls the callee is replaced by the return value of the callee. Refer to
Figure 1.4. Since the caller will be using the return value and frames have a bottom-up
construction, the return variable is stored at the bottom of each frame. The last step of destroying
a frame is popping the return value sitting on the top of the stack as part of the caller’s code. In
turn, that caller is the callee of some previous caller, and so forth.

For Samcode, upon encountering a function to execute, the caller (which is the current function)
must first allocate space for the return variable of the callee. As you have seen in previous
chapters, you would use ADDSP 1 or PUSHIMM value. How should you choose?

• When your language has default returns, use PUSHIMM, as in PUSHIMM 0.
• When your language has no specific default, use ADDSP.

Also, when compiling Bali to Samcode, you will find it very handy to label the first instruction of
a function in your Samcode with the Bali function name. For instance, given the following
generic Bali code,

int f () { g (2) ; }
int g (int x) { /* whatever */ }

your compiler would produce the following Samcode for function g:
f:
// possibly other code in f
ADDPSP 1 // start building g’s frame
// more Samcode coming!

Why use label f?
• We provide labels so that we can jump to a specific function elsewhere in Samcode.
• We use f here, because f is the caller of g, and g(2) is an expression in f’s frame!

So, where’s g’s frame? You will see a label for g when we reach the callee portion of the frame.
Note that you also place the label and the first instruction on the same line as f: ADDSP 1.

3.3.2 Parameters

After allocating a return variable, there are some choices we could have made for our model. We
choose to push parameters (or just params) onto the frame before handling the remaining caller

Figure 1.4: Return Variable

rv

more “caller”

“callee”

direction of
stack growth

Chapter 3: Functions 5/15
code, which is the “administrative information” to which we previously alluded. Pushing the
actual arguments gets the caller’s Samcode out of the way. Figure 1.5 summarizes the structure of
the caller portion stack that we have developed, so far.

When pushing the parameters, your caller must resolve each expression first! So, code such as
g ((1 + 2)) ;

involves writing Samcode for (1 + 2). The result of each of expression, the actual argument, is
pushed onto the frame for function g, as follows:

f:
ADDSP 1 // rv of g
PUSHIMM 1
PUSHIMM 2
ADD // pop 1 and 2, push param value 3
// more Samcode

If your function has no formal parameters, you would simply not have any Samcode nor cells for
this portion of the frame.

3.3.3 Frame Based Register

To distinguish a specific frame from other frames, we will use the frame based register (FBR).
The FBR stores the address of the current frame (and thus, function) being processed, as shown
below in Figure 1.6. The FBR points to a location in each frame because the FBR stores an integer
that is a cell address, as discussed in Section 2.3. Do not be tempted to think of the FBR as
pointing to the bottom of the frame or even holding a simple count of the current frame! Why not
use these values? As you will discover, the FBR provides a convenient way to access a function’s
local variables and parameters, which are stored relative to an FBR.
To get a feel for the model, recall from Chapters 1 and 2 that we used FBR’s default initial value
of 0. Assume, instead, that the current FBR is address 12345. When we say STOREOFF 2, we
really have placed the top of the stack in address 12345+2. Perhaps the next function’s frame has
an FBR of 13579. When executing STOREOFF 4, you are now accessing that a variable of the
other function. So, we now have the ability to store and access a variable within the scope of a
particular function!

3.3.4 Saved FBR

So, where exactly should the FBR point inside a function’s frame? We will set the FBR to point to
the cell just after all the parameters. Since SaM keeps track of the stack pointer from each

Figure 1.5: Parameters

rv

“callee”

params

“administrative info”

direction of
stack growth

Chapter 3: Functions 6/15
allocation of stack memory, SaM knows the cell address above the parameters. In fact, this cell
will serve double duty, as discussed below.
Suppose SaM is finishing processing code of the following form:

f () { g (1) ; }

When the current frame (the callee, g) finishes executing, control needs to return to the caller f.
The caller needs to remove the parameter and use the return value. But returning to the caller
means using f’s frame, which is below g’s frame. To restore the FBR to point inside f’s frame,
SaM needs to remember f’s address. Given each frame’s ability to store values, we can simply
store f’s address inside g’s frame! So, the cell just above the parameters is called the saved FBR,
which stores the previous frame’s FBR value.
Fortunately, the SaM instructions make the saving of the caller’s FBR and setting of the callee’s
FBR fairly easy. The LINK instruction takes the current FBR (the FBR of the caller) and pushes it
onto the stack. Then, LINK takes the address of the just-saved FBR and stores it in the FBR. Thus,
the FBR always points to a saved FBR cell. Isn’t that convenient?
For example, when calling g(1), you would have the following Samcode:

f:
ADDSP 1 // return value for g
PUSHIMM 1 // push parameter 1 for g(1)
LINK // push f’s FBR and set current FBR to g
// more code

However, you are not finished learning about the frame!

3.3.5 Saved PC

You have almost finished the caller portion…just one more cell to allocate! So far, we have
focused on the caller’s Samcode, which is code used to set up the frame. We need a way to
execute the actual callee code, which is technically inside the body of the callee. As with other
control structures, we need to jump to the callee’s code. Likewise, we will need to remember a
“place” to return, which in this case, is the caller. So, the next address on the stack is reserved to
restore control to the caller.

Figure 1.6: FBR Model

FBR

frame for main

frame for A

frame for B

main() { A(); }

A() { B(); }

B() { ... }

direction of
stack growth

Chapter 3: Functions 7/15
What value is stored in this slot? Recall that the program counter (PC) is a register that keeps
track of the current instruction. To help identify an instruction, SaM uses instruction labels, as
shown in Figure 1.8.

Starting with 0, SaM internally numbers each instruction with an integer. Don’t confuse the
Samcode label with a cell address! The instruction labels are a completely different numbering
scheme, which SaM uses to keep track of each instruction inside the SaM “engine.” But, you too
can use the labels, as you do with JUMP and JUMPC. For functions, you use JSR label (jump to
subroutine label). Note that SaM automatically converts your labels into integers.

Figure 1.7: Saved FBR

Figure 1.8: SaM Labels

FBR

frame for f

frame for g

direction of
stack growth

“callee”

rv

params

saved FBR

“more admin info”

“callee”

rv

params

saved FBR

“more admin info”

ADDSP 3
PUSHIMM 10
STOREOFF 1
PUSHIMM 20
STOREOFF 2
PUSHOFF 1
PUSHOFF 2
ADD
STOREOFF 0
ADDSP -2
STOP

int main () {
int x , y;
x = 10 ;
y = 20 ;
return (x + y) ;

}

Chapter 3: Functions 8/15
Before giving the details on JSR, note that the general pattern in Samcode for f calling g is
f:
caller Samcode
JSR g
caller Samcode
g:
callee Samcode
return to Samcode after the "JSR g"

The JSR forces SaM to jump to the g label, which starts the callee code. At the end of the callee
code, SaM needs to finish the caller’s Samcode. The remaining Samcode is a list of instructions
that are written just below the JSR g. Above the saved PC, the callee will continue building the
frame, as shown in Figure 1.9.

Now, we can reveal exactly what JSR does:
• Stack[SP]←PC+1

Store the address of the next Samcode instruction to process on the stack. This cell is
called the saved PC.

• SP++
Increment the stack pointer to the cell just above the saved PC.

• PC←label
Sets the PC to label, which means executing instructions elsewhere in your Samcode. So,
you effectively jump to another location in your Samcode file, which should be the
callee’s Samcode.

How does SaM return control to the caller?
• The stack is building up and tearing down as the callee executes the block of statements

inside its body. The callee must also “tear down” the frame as the block finishes
processing. When the callee’s body finishes, the SP should be pointing to the saved PC
cell.

Figure 1.9: Saved PC

frame for f

frame for g

FBR

direction of
stack growth

“callee”

rv

params

saved FBR

saved PC

“callee”

rv

params

saved FBR

saved PC

Chapter 3: Functions 9/15
• SaM is jumping back and forth in its stored collection of Samcode instructions. When
SaM executes JSR g, SaM literally jumps to another instruction. When the callee finishes
its work, control needs to return to the caller. Since the SP now points to the saved PC, a
call to a special instruction RST (return from subroutine) sets the PC to the value on the
stack. So, SaM can jump to instruction just below the JSR g!

Do you see how SaM uses cell addresses and program labels in a collaborative fashion? Formally,
RST does the following:

• PC←Stack[SP]
Sets the PC to the current value on the stack. If the callee properly tore down the callee
portion of the frame, the PC should now be the saved PC.

• SP--
The saved PC is popped.

Refer also to Figure 1.10, which shows the same pattern between caller f and callee g. JSR goes to
the location of the callee Samcode inside SaM, and RST returns to the remaining instructions of
the caller.

The Samcode, below, gives a bit more detail to show the pattern for f () { g (1) ; }:
f:
// statements inside f
ADDSP 1 // rv for g
PUSHIMM 1 // push parameter
LINK // save f’s FBR; set FBR to g
JSR g // call g
// code to tear down g’s frame
// continue with f’s frame
g:
// statements inside g
RST // return

Now that you can build the caller portion of the frame, we focus on the callee.

3.3.6 Callee Code

The callee portion of the frame is pretty straightforward as opposed to the JSR and RST insanity,
which won’t seem so crazy once you get used to it. There are two portions of the callee:

• Local variables, or just locals, which are allocated just above the saved PC.
• Cells, called temporaries, to store general code in the body of the callee.

Figure 1.10: Program Instructions In SaM’s Memory

JSR g

gf

RST

caller callee

Chapter 3: Functions 10/15
These cells correspond to the body of the callee, which is the primary block of statements that
constitute the actual function. As hinted at in Section 2.1, the callee is effectively the function
body. So, all of the Samcode you learned in Part 2 is effectively the callee. Of course, the callee
may in turn call yet another function, which will build another frame on top of the stack. In Figure
1.11 we now show the complete convention for the frames on the stack.Also, we can now
completely describe the process of destroying a function’s frame.

The complete process of the callee is as follows:
• Perform the primary body of the callee code.
• Store the return value with STOREOFF. Note that the offset will be at least -1 because the

FBR is set to the saved FBR, which is above the parameters and return variable.
• Tear down the frame.
• Return to the caller with RST.

So, you will have a general pattern that looks something like the following template:
Label:
callee Samcode
JUMP LabelEnd:
LabelEnd:
STOREOFF -(p+1) // store rv
ADDSP -locals // deallocate locals
RST // return to caller

Why do we use a LabelEnd to identify a portion of the callee’s Samcode? Since the callee might
involve control structures, this style provides a way to distinguish the code for the final phase in
which the callee finishes tearing down itself and returning to the caller.

3.3.7 The Rest Of The Caller Code

After returning to the caller from the callee, the remaining Samcode needs to tear down the rest of
the frame, as shown in Figure 1.3. Since everything up to, and including the saved PC, is popped
by the callee, the caller needs to do the following:

• Restore the FBR. Use the instruction UNLINK, which sets the FBR to the saved FBR
address (thus moving the FBR to saved FBR of the previous frame) and deallocates the
cell.

• Remove the parameters. Use ADDSP -p.

The remaining cell on the stack is the return value, which is used by the previous callee.
Eventually, the final return value will be that of the program.

Figure 1.11: Complete Frame Order

direction of
stack growth rv

params

saved FBR

saved PC

locals

temporaries

Chapter 3: Functions 11/15
Our running example of f () { g (1) ; } is finished below:
f:
// statements inside f
ADDSP 1 // rv for g
PUSHIMM 1 // push parameter
LINK // save f’s FBR; set FBR to g
JSR g // call g
UNLINK // restore FBR to f’s saved FBR
ADDSP -1 // pop param 1
// continue with f
g:
// statements inside g
JUMP gEnd:
gEnd:
STOREOFF -2 // store rv
RST // return

3.4 Samcode Patterns
This section summarizes the algorithm and templates needed to build up and tear down the stack.

3.4.1 Program and Main Code

There is an element of “chicken-and-the-egg” at work herein. Namely, who calls main? Well, you
could say, “the program.” But who calls the program? Another program? And who calls whatever
that is…?
What we suggest that you do is limit the pattern to “Program” who calls the main function. The
model that we follow pretends that “Program” is a degenerate function, or a function with limited
features:

• The FBR of “Program” is address 0.
• The return variable of “Program” is address 0.
• The variables of “Program” are any global variables. (See next section.)

As shown in Figure 1.12, “Program” calls main. So, the new FBR points to main. Eventually,
program will need to store main’s return value in the first cell. Following this reasoning, you may
use the following template:

Program:
ADDSP 1 // return value for main (and program)
ADDSP g // allocate global variables
// set up main:
ADDSP 1 // allocate main’s return variable
LINK // save old FBR (Program) and set new FBR (main)
JSR main // jump to main
// clean up main:
UNLINK // pop FBR
STOREOFF 0 // store return value of Program (use main’s rv)
ADDSP -g // pop globals
STOP // done!
main:

Chapter 3: Functions 12/15
ADDSP v // allocate main’s local variables
code for main’s statements
code for return expression
JUMP MainEnd // finish main
mainEnd:
STOREOFF -1 // store rv
ADDSP -v // deallocate locals
RST // return to program

There are other models, which you may use. Regardless of what you choose, remember that SaM
always starts at the top of your Samcode file and that you must have a STOP to finish.

3.4.2 Global Variables and Functions

If your grammar has global variables, then you are strongly encouraged the suggested model in
the previous section. Thus, the globals will likely reside in the “Program” frame. As opposed to
STOREOFF and PUSHOFF, which rely on the FBR for relative addresses, you now must use
STOREABS and PUSHABS, which are described in Part 1. Your compiler will need to maintain a
symbol table with the absolute cell addresses of the global variables so that all functions can
access the information.
Do you notice the similarity between global variables and how functions are called? Somewhere
in your compiler, you also need to keep track of function names because functions in Part 3 are
not part of classes. Instead, functions exist in the scope of the program!

Figure 1.12: “Program” Frame

saved FBR

saved PC

locals

temporaries

direction of
stack growthProgram rv

globals

main rv

FBR

direction of
stack destruction

Chapter 3: Functions 13/15
3.4.3 Caller Pattern

Figure 1.13 summarizes the Samcode caller pattern, like g (e1 , … , en).

3.4.4 Callee Pattern

Figure 1.14 summarizes the Samcode pattern for a function call, like

int g (t1 p1, t2 p2, ... , tn pn) {
locals
statements
return statement

}

3.5 Examples
The following examples uses an expanded Bali-- (not your real Bali!), but the Samcode follows
the required pattern as explained in this document. We are also using an alternative program
structure.

Figure 1.13: Caller Pattern

ADDSP 1

code for e1

…

code for en

LINK

JSR g

UNLINK

ADDSP -p

return value for new function
resolve e1 to push param value
…
resolve en to push param value
save FBR of caller and set FBR to callee (g)
jump to subroutine g (the callee)
pop saved FBR and store as new FBR
after returning, pop parameters

Figure 1.14: Callee Pattern

g:

callee Samcode

JUMP gEnd:

gEnd:

STOREOFF -(p+1)

ADDSP -locals

RST

callee name
code for primary body in callee
process clean-up of callee
portion of Samcode to finish callee
store rv
deallocate local variables
return to caller

Chapter 3: Functions 14/15
3.5.1 Add

main() {
{ int x, int y; }
{ x = 10; y = 20;
 return add(x,y); }

}
add(int p1, int p2) {

{ }
{ return (p1+p2); }

}

main: PUSHIMM 0 // return slot for main and program
 ADDSP 2 // allocate 2 local vars
 PUSHIMM 10 // push 10
 STOREOFF 1 // store val 10 in address 1 (x<-10)
 PUSHIMM 20 // push 20
 STOREOFF 2 // store val 20 in address 1 (y<-20)
 PUSHIMM 0 // allocate return value for add
 PUSHOFF 1 // push value of x for p1
 PUSHOFF 2 // push value of y for p2
 LINK // save old FBR (0) and update FBR (6)
 JSR add // jump to function "add"
 UNLINK // restore FBR after returning from "add"
 ADDSP -2 // pop parameters (p1, p2) of "add"
 JUMP mainEnd // prepare to end main
mainEnd: STOREOFF 0 // store program’s rv
 ADDSP -2 // remove x,y
 STOP // end program
add: PUSHOFF -2 // get p1
 PUSHOFF -1 // get p2
 ADD // push x+y
 JUMP addEnd // begin to end add
addEnd: STOREOFF -3 // store x+y as rv

 RST // return to main

3.5.2 Selection

main() {
{ int val; }
{ val = 6;

 return (check(val)); }
}
check(int val) {

{ int flag; }
{ if ((val > 5))

flag = 10;
 else

flag = 20;
 return flag; }

}

Chapter 3: Functions 15/15
main: PUSHIMM 0 // space for program rv
 PUSHIMM 0 // space for val
 PUSHIMM 6 // value to store in val
 STOREOFF 1 // val <- 6
 PUSHIMM 0 // space for check’s rv
 PUSHOFF 1 // param to check
 LINK // save and update FBR
 JSR check // call check

 UNLINK // done with check; pop FBR
 ADDSP -1 // get rid of local param
 JUMP mainEnd // prepare to end program
mainEnd: STOREOFF 0 // store rv
 ADDSP -1 // get rid of local var
 STOP // end program
check: ADDSP 1 // allocate flag
 PUSHOFF -1 // push val
 PUSHIMM 5 // push 5

 GREATER // Is Vbot > Vtop (val>5)?
 JUMPC correct // true?

 PUSHIMM 20 // false, push 20
 STOREOFF 2 // flag = 20
 JUMP continue // continue with program
correct: PUSHIMM 10 // true, push 10
 STOREOFF 2 // flag = 10
 JUMP continue // continue
continue: PUSHOFF 2 // push the value of flag
 JUMP checkEnd // begin to end add
checkEnd: STOREOFF -2 // store flag as rv
 ADDSP -1 // ditch flag
 RST // return to main

	Chapter 3: Functions
	3.1 Introduction
	3.2 Background
	3.2.1 Functions
	3.2.2 The Stack
	3.2.3 Registers (Revisited)
	3.2.4 Caller and Callee

	3.3 Frame Structure
	3.3.1 Return Value
	3.3.2 Parameters
	3.3.3 Frame Based Register
	3.3.4 Saved FBR
	3.3.5 Saved PC
	3.3.6 Callee Code
	3.3.7 The Rest Of The Caller Code

	3.4 Samcode Patterns
	3.4.1 Program and Main Code
	3.4.2 Global Variables and Functions
	3.4.3 Caller Pattern
	3.4.4 Callee Pattern

	3.5 Examples
	3.5.1 Add
	3.5.2 Selection

