
Compiler Specification

CS212

Fall 2005

This document contains a list of all required specifications that your submission for CS212 must adhere to. It also
includes details on assumptions made about the programs that will be compiled with your submission and information
on how to handle errors.

1 Compiler Specifications
• Your compiler must use an AST as an intermediate stage between parsing and code generation.

– The entire AST must be constructed before any code generation begins.

– The different node types of the AST should correspond to separate classes. Do not confuse this requirement
with the fact that all AST classes should be subclasses of a single AST interface or single AST abstract
class.

• Your compiler must use symbol tables to keep track of variable locations and variable types.

• You must provide a class called BaliCompiler (in file BaliCompiler.java) that serves as the starting
point for your compiler:

– BaliCompiler must implement the CS212Compiler interface.

– We provide a stubbed version of BaliCompiler.java, which you may choose to use.

– Our BaliCompiler.java demonstrates setting up a PrintWriter to produce your code as a String,
which the CS212Compiler interface requires.

• Only the starting point (BaliCompiler.java) has a specified name. All other classes that are part of your
compiler can have any name.

• The BaliCompiler you submit must be in the default package. All other files you submit may be in a seperate
package, but should not be in the edu.cornell.cs.

• Your compiler should not produce any output either to a file or to the standard output or error file. It is OK for
your program to produce such output while you are debugging, but any such debugging output must be turned
off in your submitted version.

• Your compiler must work with the latest version of SaM as posted on the website.

• Testing information

– The code you submit should not include a main function. We will be testing your compiler by using the
method provided by the CS212Compiler interface.

– We supply a main class BC.java which you can use to test your compiler. Your compiler is required
to work with the provided BC.java main class and must implement the provided CS212Compiler
interface. You may not submit modified version of these files.

• You must generate Samcode that represents a valid translation of the supplied Bali program.

1



– Your generated Samcode does not need to contain any comments.

– Remember to test your Samcode in the SaM Simulator.

• You must adhere to some programming specifications:

– Your code must comply with the Java 5 specification.

– You must comment your code and maintain tenets of good programming style.

• Your compiler must be approved by the AMS submission application and submitted as an AMS-generated
package.

2 Error Handling
There are two kinds of errors that can occur in Bali programs:

• syntax errors: code that violates the rules of a language’s grammar.

• semantic errors: code that violates the rules of language’s semantics.

For example, a missing semicolon or an unmatched parenthesis is a syntax error, whereas a type mismatch or an
undeclared variable is a semantic error.

Rather than printing an error message to System.out (or System.err), errors in supplied Bali programs can
be handled most clearly and cleanly by using exceptions. We have supplied exception classes corresponding to the
two kinds of errors that can occur:

• BaliSyntaxException for syntax errors.

• BaliSemanticException for semantic errors.

• IllegalBaliException, an abstract root class for both the syntatic and semantic exceptions.

The SamTokenizer includes several ways to examine/consume tokens. Depending on how you write your code,
you may also generate a TokenizerException, which is a runtime exception thrown by the tokenizer when
various mismatches occur. If you have correctly caught all syntatical errors, your compiler should not generate
TokenizerExceptions.

BC.java, the main program that runs your compiler, is designed so that it catches IllegalBaliExceptions
and then prints the exception’s message.

3 Assumptions
While ideally you would be writing a compiler for a “real” language using the actual tools used by compiler developers,
there is not enough time to introduce all those tools and design concepts. There are several assumptions that we will
be making when testing your compiler, regarding both the parsing and the code itself.

1. You do not need to check variable names. The definition of a name in the grammar is equivalent to the definition
of a word token in SamTokenizer. However, you must check for duplicate variable names.

2. You do not need to process the single or double quote delimiters for characters and strings, respectively. Rather,
these are handled by the tokenizer and returned as character or string tokens as appropriate. However, when
your compiler outputs SaM-code, it must enclose strings/characters in the appropriate delimiters and escape all
necessary characters (especially “ for strings and ’ for characters).

3. Any text that follows // and is on the same line as the // is ignored. Comments are handled by the Tokenizer and
thus do not need to be handled by your compiler.

2


