Part 3 Extra Credit

CS212
Fall 2005

The Bali language, for which you're writing a compiler thensester, is strongly modeled after the C language,
with some ideas from Java. However, it lacks many of the featof C, which make it so powerful. It also lacks
certain syntactic elements, that would make writing codgeza To remedy this, here is an extra credit opportunity
to enhance the language. You can complete any of the featiwes designed below for bonus points in the course.
Bouns points are kept separate from grades, and as sucbgvatinsideredfter we compute all numerical and letter
course grades. This gives each student/group an oppgrtoniticrease their score without causing others to have
lower grades.

In general, if there are multiple subitems for an extra dyélaey must be completed in order. For instance, in order
to complete (1.2), you should have already completed (1.1)

1 On-heap Objects
1.1 Structures (10 Bonus Points)
Syntax:

program — [globalVarg] (function| prototype| structdef) *
structdef — structdef name{ varDect } ;

type — struct name(*)+

binop — >

expPart — sizeof (type| struct name)

Semantics:

e Structures are similar to Java objects without any methdbey provide a way for the programmer to group
several variables within the same 'object’. Those varislle declared in "Structure" scope, and they are not
visible from anywhere, except when accessed with thedperator. Like other scopes, the "Structure" scope
should not allow duplicate variables. Unlike other scopies,'Structure" scope should not propagate queries to
its parent.

e The syntax above implements structures on the heap. C lnassts on the stack, but we will not support those.
To restrict our structures, notice that struct types cabedtirectly declared, only struct pointers. Furthermore,
those pointers should not be dereferencable. For arragas@lnote that arrays of structures are not supported,
only arrays of structure pointers.

e Structure-based types are valid everywhere in the progeaem before the structure is defined. If the structure
is never defined, a semantic error should be generated, asegfo a syntax error for invalid primitive types.

e The struct pointer access operater)(requires a valid struct pointer on the left side, whosecstne has as a
field the variable on the right side.

e A struct field is now a valid Ivalue (in other words, it can bed®n the left side of an assignment). However, it
must be enclosed in parentheses like other binary expresdior example:
(a->b) = c;

e A struct field is now a valid addressable expression (it caoferated upon by). Again, parentheses are
required. For example:
(c->d) = &(a->b)

e Thesizeof builtin function takes as input a type (either primitive enusture), and returns its integer size - the
number of memory locations it takes up. Notice that herevalgl to use a struct without a pointer. The typical
way this works is:
struct str_nanme* var = <struct str_nane*> mal | oc(si zeof (struct str_nane));

e There is another hidden use @feof. If you implement structures we expect pointer arithmeftic €xample,
adding an integer to a pointer), to be translated as follows:

typel* a;
int b;

a + btranslatest@ + b * sizeof (typel). Thisis how pointer addition works in C - when you add 1
to an integer pointer, you are actually adding 4 to the poifsi@ce the size of an integer is 4 bytes on the x86
architecture)

e sizeof, struct, andstructdef are now reserved keywords

1.2 Structswith functions (classes) (10 Bonus Points)

Syntax:
structdef — structdef name{ (varDecl)* } [{ (function| prototype)* } 1;

expPart — this

Semantics:

Note: In the following, we use “methods” to refer to functions defil within a struct and “functions” to refer to
global functions (those functions defined outside of sguct

e Now structures have an optional block after the variablelblwhich can contain functions and/or prototypes.
When parsing these methods, they follow the same rules atidas in a Bali program with respect to defining
- a method is considered to be defined when either its functefimition or prototype is encountered, and
the types, number, and order of arguments and return typbetbfthe prototype (if specified) and function
definition must be equal.

e Methods are invoked on an instance of an struct, using-thleoperator. For instance, if there is a structure
namedmystruct with methodfoo that takes a single integer argument, and some other furvictethod has a
variablex of typestruct mystruct* , thenx->foo(3) is a valid way to call the methdo on the struck.

e Each method in a struct has access to an implicitvariable whose type is a pointer to the enclosing struct,type
which allows access to the variables within the structuat the method was invoked on. For instance, in the
example above, the methéab has an implicit variabléhiswhich is equal toc (the structure it was invoked on).
When compiling methods of a struct, you should add anottiemaent namethis of a type corresponding to a
pointer to the struct (so a method that takes 3 argumentslimiBbactually take 4 arguments when compiled
to SaM). When compiling calls to a method on an instance ofuctpass the reference to that struct in the
appropriate argument you have implicitly defined. Thisvaflanethods to work on an instance of an object

e thisis now a reserved keyword.

2 Variablelnitializers (10 Bonus Points)

Syntax:
varDecllnit — type namd = expressior} (, name[= expressiof}) * ;
varBlock — { varDeclInit* }

Semantics:

e Initializers contain code that performs a variable assigminmmediately after the variable declarations. They
can act upon variables in any scope, except structure Vesig@ibstructures are implemented).

e The initializer code is to be executed prior to any otherestegnts in the same scope. If multiple initializers are
present, they are to be executed in left-to-right, top-tttdm order.

e Avariable is considered declared during the executionsahitializer statement, and any subsequent initializ-
ers. Itis undeclared for any prior initializers.

For example:

Thisis valid, and safe: i nt a=4,
This is valid, but unsafe: i nt a, b=a;
This is valid, but unsafe: i nt a

This is not valid: int a

3 Break/Continue

3.1 Basic break and continue (10 Bonus Points)
Syntax:

statement — break;
statement — continue;

Semantics:

e break immediately exits out of the nearest enclosifguntil or for loop. Itis equivalent to the statement block
of a loop completing its executicand the conditional expression of the loop evaluatinge for do/until loops
or false for for loops. After completion of théreak statement, execution should continue immediately after
the immediately enclosing loop.

e continue immediately jumps to the end of the current iteration of tkanest enclosing loop. It is equivalent to
the statement block of a loop completing its execution. Fdo/antil loop, this means that the conditional is
evaluated, and a new iteration starts if ifése. For afor loop, the third expression is executed, then the second
is evaluated and a new iteration starts if itige.

e Both statements are valid inside loops only. Any use outsfa enclosing loop should raise a semantic error.

e break andcontinue are now reserved keywords.

3.2 Break tolabel (10 Bonus Points)
Syntax:

statement — break [name];

statement — continue[name];

statement — [@name] do statemenuntil (expressio}

statement — [@name] for ([expression;[expression;[expression) statement

Semantics:

e Loop structures now can have an optional label in front ofrth@ his label begins with a@ symbol but is
otherwise the same as a variable identifier.

e Both break andcontinue now can accept an optional label argument. When a label wifigak their effect is
now applied to the appropriately labeled enclosing loop.ifstance,

@oopl for (x =1; x < 10; x = x+1) {
@oop2 for (y =1; vy <10; y =x +vy) {
@ oop3 do {
if (z == 3) break | oopl;
Z = Z + X*y,;
} until (z > 10);
}
}

will break out of all three loops when z is equal to 3.

e break and continue should only accept labels that refer to enclosing loops endhrrrent function. It is a
semantic error for a label to be specified that refers to aermanlesing loop, or a loop in another function.

¢ If nested loops have the same lableteak and continue when applied to that label refer to the innermost
enclosing loop with that label.

