
Part 3 Extra Credit

CS212

Fall 2005

The Bali language, for which you’re writing a compiler this semester, is strongly modeled after the C language,
with some ideas from Java. However, it lacks many of the features of C, which make it so powerful. It also lacks
certain syntactic elements, that would make writing code easier. To remedy this, here is an extra credit opportunity
to enhance the language. You can complete any of the featureswe’ve designed below for bonus points in the course.
Bouns points are kept separate from grades, and as such, willbe consideredafter we compute all numerical and letter
course grades. This gives each student/group an opportunity to increase their score without causing others to have
lower grades.

In general, if there are multiple subitems for an extra credit, they must be completed in order. For instance, in order
to complete (1.2), you should have already completed (1.1)

1 On-heap Objects

1.1 Structures (10 Bonus Points)

Syntax:

program → [globalVars] (function| prototype| structdef) *
structdef → structdef name{ varDecl* } ;
type → struct name(*)+
binop → ->
expPart → sizeof (type| struct name)

Semantics:

• Structures are similar to Java objects without any methods -they provide a way for the programmer to group
several variables within the same ’object’. Those variables are declared in "Structure" scope, and they are not
visible from anywhere, except when accessed with the (->) operator. Like other scopes, the "Structure" scope
should not allow duplicate variables. Unlike other scopes,the "Structure" scope should not propagate queries to
its parent.

• The syntax above implements structures on the heap. C has structures on the stack, but we will not support those.
To restrict our structures, notice that struct types cannotbe directly declared, only struct pointers. Furthermore,
those pointers should not be dereferencable. For arrays, please note that arrays of structures are not supported,
only arrays of structure pointers.

• Structure-based types are valid everywhere in the program,even before the structure is defined. If the structure
is never defined, a semantic error should be generated, as opposed to a syntax error for invalid primitive types.

• The struct pointer access operator (->) requires a valid struct pointer on the left side, whose structure has as a
field the variable on the right side.

• A struct field is now a valid lvalue (in other words, it can be used on the left side of an assignment). However, it
must be enclosed in parentheses like other binary expressions. For example:
(a->b) = c;

1

• A struct field is now a valid addressable expression (it can beoperated upon by&). Again, parentheses are
required. For example:
(c->d) = &(a->b)

• Thesizeof builtin function takes as input a type (either primitive or structure), and returns its integer size - the
number of memory locations it takes up. Notice that here it isvalid to use a struct without a pointer. The typical
way this works is:
struct str_name* var = <struct str_name*> malloc(sizeof(struct str_name));

• There is another hidden use ofsizeof. If you implement structures we expect pointer arithmetic (for example,
adding an integer to a pointer), to be translated as follows:

type1* a;
int b;

a + b translates toa + b * sizeof(type1). This is how pointer addition works in C - when you add 1
to an integer pointer, you are actually adding 4 to the pointer (since the size of an integer is 4 bytes on the x86
architecture)

• sizeof, struct, andstructdef are now reserved keywords

1.2 Structs with functions (classes) (10 Bonus Points)

Syntax:
structdef → structdef name{ (varDecl)* } [{ (function| prototype)* }];
expPart → this

Semantics:
Note: In the following, we use “methods” to refer to functions defined within a struct and “functions” to refer to

global functions (those functions defined outside of structs)

• Now structures have an optional block after the variable block which can contain functions and/or prototypes.
When parsing these methods, they follow the same rules as functions in a Bali program with respect to defining
- a method is considered to be defined when either its functiondefinition or prototype is encountered, and
the types, number, and order of arguments and return types ofboth the prototype (if specified) and function
definition must be equal.

• Methods are invoked on an instance of an struct, using the (->) operator. For instance, if there is a structure
namedmystruct with methodfoo that takes a single integer argument, and some other function/method has a
variablex of typestruct mystruct* , thenx->foo(3) is a valid way to call the methodfoo on the structx.

• Each method in a struct has access to an implicitthis variable whose type is a pointer to the enclosing struct type,
which allows access to the variables within the structure that the method was invoked on. For instance, in the
example above, the methodfoo has an implicit variablethis which is equal tox (the structure it was invoked on).
When compiling methods of a struct, you should add another argument namedthis of a type corresponding to a
pointer to the struct (so a method that takes 3 arguments in Bali will actually take 4 arguments when compiled
to SaM). When compiling calls to a method on an instance of a struct, pass the reference to that struct in the
appropriate argument you have implicitly defined. This allows methods to work on an instance of an object

• this is now a reserved keyword.

2

2 Variable Initializers (10 Bonus Points)

Syntax:

varDeclInit → type name[= expression] (, name[= expression]) * ;
varBlock → { varDeclInit* }

Semantics:

• Initializers contain code that performs a variable assignment immediately after the variable declarations. They
can act upon variables in any scope, except structure variables (if structures are implemented).

• The initializer code is to be executed prior to any other statements in the same scope. If multiple initializers are
present, they are to be executed in left-to-right, top-to-bottom order.

• A variable is considered declared during the execution of its initializer statement, and any subsequent initializ-
ers. It is undeclared for any prior initializers.

For example:
This is valid, and safe: int a=4, b=a;
This is valid, but unsafe: int a, b=a;
This is valid, but unsafe: int a=a;
This is not valid: int a=b, b;

3 Break/Continue

3.1 Basic break and continue (10 Bonus Points)

Syntax:

statement → break;
statement → continue;

Semantics:

• break immediately exits out of the nearest enclosingdo/until or for loop. It is equivalent to the statement block
of a loop completing its executionand the conditional expression of the loop evaluatingtrue for do/until loops
or false for for loops. After completion of thebreak statement, execution should continue immediately after
the immediately enclosing loop.

• continue immediately jumps to the end of the current iteration of the nearest enclosing loop. It is equivalent to
the statement block of a loop completing its execution. For ado/until loop, this means that the conditional is
evaluated, and a new iteration starts if it isfalse. For afor loop, the third expression is executed, then the second
is evaluated and a new iteration starts if it istrue.

• Both statements are valid inside loops only. Any use outsideof an enclosing loop should raise a semantic error.

• break andcontinue are now reserved keywords.

3

3.2 Break to label (10 Bonus Points)

Syntax:

statement → break [name];
statement → continue [name];
statement → [@name] do statementuntil (expression);
statement → [@name] for([expression];[expression];[expression]) statement

Semantics:

• Loop structures now can have an optional label in front of them. This label begins with an@ symbol but is
otherwise the same as a variable identifier.

• Both break andcontinue now can accept an optional label argument. When a label is specified, their effect is
now applied to the appropriately labeled enclosing loop. For instance,

@loop1 for (x = 1; x < 10; x = x+1) {
@loop2 for (y = 1; y < 10; y = x + y) {

@loop3 do {
if (z == 3) break loop1;
z = z + x*y;

} until (z > 10);
}

}

will break out of all three loops when z is equal to 3.

• break and continue should only accept labels that refer to enclosing loops in the current function. It is a
semantic error for a label to be specified that refers to a non-enclosing loop, or a loop in another function.

• If nested loops have the same label,break and continue when applied to that label refer to the innermost
enclosing loop with that label.

4

